ML-Aided Dynamic BSR Periodicity Adjustment for Enhanced UL Scheduling in Cellular Systems

Loading...
Thumbnail Image

Authors

Chukhno, Nadezhda V.
Saafi, Salwa
Andreev, Sergey

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Contemporary research has revealed a limitation in the Uplink (UL) Buffer Status Report (BSR) scheduling procedure - its reliance on outdated information. In addition, a significant limitation in current BSR implementations lies in their inflexibility. The 3rd Generation Partnership Project (3GPP) specifications constrain BSR periodicities to certain quantized values based on Quality of Service (QoS) requirements for various applications. For instance, applications demanding low latency may require very small BSR periodicities, resulting in substantial overhead due to frequent BSR reports. This may result in the wastage of network resources in case of a low BSR periodicity setting. Alternatively, a high BSR periodicity setting may lead packets to wait more at the user buffer and thus result in higher packet latencies. To address these limitations, we propose a framework that predicts time intervals between packet arrivals and subsequently adjusts the BSR periodicity according to the predicted traffic arrivals. The simulation results demonstrate that the proposed Machine Learning (ML)-aided BSR reporting provides flexibility in BSR periodicity adapted to the intensity of traffic arrival and converges to optimal periodicity depending on the mean traffic arrival rate.
Contemporary research has revealed a limitation in the Uplink (UL) Buffer Status Report (BSR) scheduling procedure - its reliance on outdated information. In addition, a significant limitation in current BSR implementations lies in their inflexibility. The 3rd Generation Partnership Project (3GPP) specifications constrain BSR periodicities to certain quantized values based on Quality of Service (QoS) requirements for various applications. For instance, applications demanding low latency may require very small BSR periodicities, resulting in substantial overhead due to frequent BSR reports. This may result in the wastage of network resources in case of a low BSR periodicity setting. Alternatively, a high BSR periodicity setting may lead packets to wait more at the user buffer and thus result in higher packet latencies. To address these limitations, we propose a framework that predicts time intervals between packet arrivals and subsequently adjusts the BSR periodicity according to the predicted traffic arrivals. The simulation results demonstrate that the proposed Machine Learning (ML)-aided BSR reporting provides flexibility in BSR periodicity adapted to the intensity of traffic arrival and converges to optimal periodicity depending on the mean traffic arrival rate.

Description

Citation

IEEE Open Journal of the Communications Society. 2025, vol. 6, issue April, p. 3513-3527.
https://ieeexplore.ieee.org/document/10965763

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO