Urea hydrolysis as an efficient method for flue gas denitrification in waste-to-energy plant–experimental study

Loading...
Thumbnail Image

Authors

Freisleben, Vít
Jegla, Zdeněk
Barták, Jaroslav
Zabloudil, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

České ekologické manažerské centrum

Abstract

This paper presents the results of experimental research on the modernization of technology for the removal of nitrogen oxides (NOx) from flue gas in hazardous waste incineration plant (waste-to-energy unit). The investigated technological solution is a combination of traditional SNCR (selective non-catalytic reduction) method, and a modern technology based on urea hydrolysis. A semi-operating hydrolysis reactor is applied to produce gaseous ammonia, which is subsequently used to remove NOx from the flue gas in a hazardous waste incineration plant. Both the NOx reduction efficiency and the operating parameters of the semi-operating device are observed. The results show that the proposed technological solution is very efficient in terms of NOx reduction, where concentrations around 60 mg/scm can be easily achieved. Due to the simplicity of the proposed solution, the semi-operating device is also very reliable. However, in case of insufficient heating of the transport paths of the generated ammonia, there is a risk of deposits and clogging, as presented in the paper.
This paper presents the results of experimental research on the modernization of technology for the removal of nitrogen oxides (NOx) from flue gas in hazardous waste incineration plant (waste-to-energy unit). The investigated technological solution is a combination of traditional SNCR (selective non-catalytic reduction) method, and a modern technology based on urea hydrolysis. A semi-operating hydrolysis reactor is applied to produce gaseous ammonia, which is subsequently used to remove NOx from the flue gas in a hazardous waste incineration plant. Both the NOx reduction efficiency and the operating parameters of the semi-operating device are observed. The results show that the proposed technological solution is very efficient in terms of NOx reduction, where concentrations around 60 mg/scm can be easily achieved. Due to the simplicity of the proposed solution, the semi-operating device is also very reliable. However, in case of insufficient heating of the transport paths of the generated ammonia, there is a risk of deposits and clogging, as presented in the paper.

Description

Citation

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO