Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity

dc.contributor.authorMuoz Martin, Jose Mariacs
dc.contributor.authorRedondo Negrete, Edurnecs
dc.contributor.authorPumera, Martincs
dc.coverage.issue41cs
dc.coverage.volume17cs
dc.date.accessioned2022-01-20T15:56:08Z
dc.date.available2022-01-20T15:56:08Z
dc.date.issued2021-10-01cs
dc.description.abstractThe ability to combine organic and inorganic components in a single material represents a great step toward the development of advanced (opto)electronic systems. Nowadays, 3D-printing technology has generated a revolution in the rapid prototyping and low-cost fabrication of 3D-printed electronic devices. However, a main drawback when using 3D-printed transducers is the lack of robust functionalization methods for tuning their capabilities. Herein, a simple, general and robust in situ functionalization approach is reported to tailor the capabilities of 3D-printed nanocomposite carbon/polymer electrode (3D-nCE) surfaces with a battery of functional inorganic nanoparticles (FINPs), which are appealing active units for electronic, optical and catalytic applications. The versatility of the resulting functional organic-inorganic 3D-printed electronic interfaces is provided in different pivotal areas of electrochemistry, including i) electrocatalysis, ii) bio-electroanalysis, iii) energy (storage and conversion), and iv) photoelectrochemical applications. Overall, the synergism of combining the transducing characteristics of 3D-nCEs with the implanted tuning surface capabilities of FINPs leads to new/enhanced electrochemical performances when compared to their bare 3D-nCE counterparts. Accordingly, this work elucidates that FINPs have much to offer in the field of 3D-printing technology and provides the bases toward the green fabrication of functional organic-inorganic 3D-printed (opto)electronic interfaces with custom catalytic activity.en
dc.description.embargo2022-09-13cs
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSmall. 2021, vol. 17, issue 41, p. 1-9.en
dc.identifier.doi10.1002/smll.202103189cs
dc.identifier.issn1613-6829cs
dc.identifier.other173178cs
dc.identifier.urihttp://hdl.handle.net/11012/203355
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofSmallcs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/smll.202103189cs
dc.rights(C) Wiley-VCHcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1613-6829/cs
dc.subject3D-printed electrodesen
dc.subjectelectrocatalysisen
dc.subjectmetal nanoparticlesen
dc.subjectquantum dotsen
dc.subjectsurface engineeringen
dc.titleVersatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-173178en
sync.item.dbtypeVAVen
sync.item.insts2022.09.16 16:50:29en
sync.item.modts2022.09.16 16:16:14en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
202103189_accepted.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:
202103189_accepted.pdf