Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity
dc.contributor.author | Muoz Martin, Jose Maria | cs |
dc.contributor.author | Redondo Negrete, Edurne | cs |
dc.contributor.author | Pumera, Martin | cs |
dc.coverage.issue | 41 | cs |
dc.coverage.volume | 17 | cs |
dc.date.accessioned | 2022-01-20T15:56:08Z | |
dc.date.available | 2022-01-20T15:56:08Z | |
dc.date.issued | 2021-10-01 | cs |
dc.description.abstract | The ability to combine organic and inorganic components in a single material represents a great step toward the development of advanced (opto)electronic systems. Nowadays, 3D-printing technology has generated a revolution in the rapid prototyping and low-cost fabrication of 3D-printed electronic devices. However, a main drawback when using 3D-printed transducers is the lack of robust functionalization methods for tuning their capabilities. Herein, a simple, general and robust in situ functionalization approach is reported to tailor the capabilities of 3D-printed nanocomposite carbon/polymer electrode (3D-nCE) surfaces with a battery of functional inorganic nanoparticles (FINPs), which are appealing active units for electronic, optical and catalytic applications. The versatility of the resulting functional organic-inorganic 3D-printed electronic interfaces is provided in different pivotal areas of electrochemistry, including i) electrocatalysis, ii) bio-electroanalysis, iii) energy (storage and conversion), and iv) photoelectrochemical applications. Overall, the synergism of combining the transducing characteristics of 3D-nCEs with the implanted tuning surface capabilities of FINPs leads to new/enhanced electrochemical performances when compared to their bare 3D-nCE counterparts. Accordingly, this work elucidates that FINPs have much to offer in the field of 3D-printing technology and provides the bases toward the green fabrication of functional organic-inorganic 3D-printed (opto)electronic interfaces with custom catalytic activity. | en |
dc.description.embargo | 2022-09-13 | cs |
dc.format | text | cs |
dc.format.extent | 1-9 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Small. 2021, vol. 17, issue 41, p. 1-9. | en |
dc.identifier.doi | 10.1002/smll.202103189 | cs |
dc.identifier.issn | 1613-6829 | cs |
dc.identifier.other | 173178 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203355 | |
dc.language.iso | en | cs |
dc.publisher | Wiley-VCH | cs |
dc.relation.ispartof | Small | cs |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/10.1002/smll.202103189 | cs |
dc.rights | (C) Wiley-VCH | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1613-6829/ | cs |
dc.subject | 3D-printed electrodes | en |
dc.subject | electrocatalysis | en |
dc.subject | metal nanoparticles | en |
dc.subject | quantum dots | en |
dc.subject | surface engineering | en |
dc.title | Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-173178 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2022.09.16 16:50:29 | en |
sync.item.modts | 2022.09.16 16:16:14 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovace | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 202103189_accepted.pdf
- Size:
- 1.29 MB
- Format:
- Adobe Portable Document Format
- Description:
- 202103189_accepted.pdf