Asymmetric Substrate Integrated Waveguide Leaky Wave Antenna with Open Stop Band Suppression and Radiation Efficiency Equalization through Broadside

Loading...
Thumbnail Image

Authors

Agrawal, Rahul
Belwal, Pravesh
Gupta, Suresh

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

A planar asymmetric substrate integrated wave¬guide leaky wave antenna is proposed with open stop band suppression and radiation efficiency equalization through broadside for the Ku-band. The stop-band behavior exhib¬ited at broadside in the 1-D periodic structure is signifi¬cantly reduced using reflection cancellation technique by placing the two slots at a quarter distance within the unit cell. Furthermore, asymmetric technique is applied. The asymmetry is introduced with respect to both axial and transversal axis of the structure so as to match the at-broadside Bloch impedance and off-broadside Bloch im¬pedance. This provides total open stop band suppression and radiation efficiency improvement as well as equaliza-tion through broadside. The problem is analyzed with the help of Bloch impedance behavior. For illustration of the above techniques; single slot, double slot and asymmetric designs are developed for the proposed leaky wave an¬tenna. The final asymmetric design after optimization is fabricated. Measured results are almost consistent with the simulation results with complete suppression of open stop band, efficiency improvement and equalization through broadside providing continuous beam scanning from –32° to +27° with constant gain of ~12.5 dBi.

Description

Citation

Radioengineering. 2018 vol. 27, č. 2, s. 409-416. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_02_0409_0416.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO