Audio declipping performance enhancement via crossfading
Loading...
Date
Authors
Záviška, Pavel
Rajmic, Pavel
Mokrý, Ondřej
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
Some audio declipping methods produce waveforms that do not fully respect the actual process of clipping and allow a deviation on the reliable samples. This article reports what effect on perception it has if the output of such “inconsistent” methods is pushed towards “consistent” solutions by postprocessing. We first propose a simple sample replacement method, then we identify its main weaknesses and propose an improved variant. The experiments show that the vast majority of inconsistent declipping methods significantly benefit from the proposed approach in terms of objective perceptual metrics. In particular, we show that the SS PEW method based on social sparsity combined with the proposed method performs comparable to top methods from the consistent class, but at a computational cost of one order of magnitude lower.
Some audio declipping methods produce waveforms that do not fully respect the actual process of clipping and allow a deviation on the reliable samples. This article reports what effect on perception it has if the output of such “inconsistent” methods is pushed towards “consistent” solutions by postprocessing. We first propose a simple sample replacement method, then we identify its main weaknesses and propose an improved variant. The experiments show that the vast majority of inconsistent declipping methods significantly benefit from the proposed approach in terms of objective perceptual metrics. In particular, we show that the SS PEW method based on social sparsity combined with the proposed method performs comparable to top methods from the consistent class, but at a computational cost of one order of magnitude lower.
Some audio declipping methods produce waveforms that do not fully respect the actual process of clipping and allow a deviation on the reliable samples. This article reports what effect on perception it has if the output of such “inconsistent” methods is pushed towards “consistent” solutions by postprocessing. We first propose a simple sample replacement method, then we identify its main weaknesses and propose an improved variant. The experiments show that the vast majority of inconsistent declipping methods significantly benefit from the proposed approach in terms of objective perceptual metrics. In particular, we show that the SS PEW method based on social sparsity combined with the proposed method performs comparable to top methods from the consistent class, but at a computational cost of one order of magnitude lower.
Description
Keywords
clipping , crossfade , declipping , optimization , sparsity , reliable samples , clipping , crossfade , declipping , optimization , sparsity , reliable samples
Citation
SIGNAL PROCESSING. 2021, vol. 192, issue 1, p. 1-5.
https://www.sciencedirect.com/science/article/pii/S0165168421004023
https://www.sciencedirect.com/science/article/pii/S0165168421004023
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0003-2221-2058 