CMOS-based active RC sinusoidal oscillator with four-phase quadrature outputs and single-resistance-controlled (SRC) tuning laws

Loading...
Thumbnail Image

Authors

Lahiri, Abhirup
Herencsár, Norbert

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

This paper proposes a very compact CMOS realization of active RC sinusoidal oscillator capable of generating four quadrature voltage outputs. The oscillator is based on the cascade of lossless and lossy integrators in loop. The governing laws for the condition of oscillation (CO) and the frequency of oscillation (FO) are single-resistance-controlled (SRC) and which allow independent FO tuning. Unlike previously reported SRC-based sinusoidal oscillators based on the active building block (ABB) based approach and which aim at reducing the number of employed ABBs, this direct CMOS realization provides a much reduced transistor count circuit and consequently offers a low power solution. A comparison with previously reported SRC oscillators in terms of number of transistors and current consumption has been provided. As a design example, a 160.2 kHz oscillator (typical process, T = 27 deg. C) with 82 mW power consumption is designed in 65 nm CMOS technology with supply voltage of +-0.5 V.
This paper proposes a very compact CMOS realization of active RC sinusoidal oscillator capable of generating four quadrature voltage outputs. The oscillator is based on the cascade of lossless and lossy integrators in loop. The governing laws for the condition of oscillation (CO) and the frequency of oscillation (FO) are single-resistance-controlled (SRC) and which allow independent FO tuning. Unlike previously reported SRC-based sinusoidal oscillators based on the active building block (ABB) based approach and which aim at reducing the number of employed ABBs, this direct CMOS realization provides a much reduced transistor count circuit and consequently offers a low power solution. A comparison with previously reported SRC oscillators in terms of number of transistors and current consumption has been provided. As a design example, a 160.2 kHz oscillator (typical process, T = 27 deg. C) with 82 mW power consumption is designed in 65 nm CMOS technology with supply voltage of +-0.5 V.

Description

Citation

AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS. 2012, vol. 66, issue 12, p. 1032-1037.
http://www.sciencedirect.com/science/article/pii/S1434841112001288

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO