LMVSegRNN and Poseidon3D: Addressing Challenging Teeth Segmentation Cases in 3D Dental Surface Orthodontic Scans
Loading...
Date
Authors
Kubík, Tibor
Španěl, Michal
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes, misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere to geometric representations, omitting the perceptual aspects of the inputs. In addition, current works often lack evaluation on anatomically complex cases due to the unavailability of such datasets. We present a projection-based approach towards accurate teeth segmentation that operates in a detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially correlated via recurrent units. We show that a projection-based framework can precisely segment teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based, edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score of 0.971220.038 and a Hausdorff distance at 95 percentile of 0.490120.571 mm. We also release Poseidon's Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental anomalies like teeth crowding and missing teeth.
The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes, misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere to geometric representations, omitting the perceptual aspects of the inputs. In addition, current works often lack evaluation on anatomically complex cases due to the unavailability of such datasets. We present a projection-based approach towards accurate teeth segmentation that operates in a detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially correlated via recurrent units. We show that a projection-based framework can precisely segment teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based, edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score of 0.971220.038 and a Hausdorff distance at 95 percentile of 0.490120.571 mm. We also release Poseidon's Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental anomalies like teeth crowding and missing teeth.
The segmentation of teeth in 3D dental scans is difficult due to variations in teeth shapes, misalignments, occlusions, or the present dental appliances. Existing methods consistently adhere to geometric representations, omitting the perceptual aspects of the inputs. In addition, current works often lack evaluation on anatomically complex cases due to the unavailability of such datasets. We present a projection-based approach towards accurate teeth segmentation that operates in a detect-and-segment manner locally on each tooth in a multi-view fashion. Information is spatially correlated via recurrent units. We show that a projection-based framework can precisely segment teeth in cases with anatomical anomalies with negligible information loss. It outperforms point-based, edge-based, and Graph Cut-based geometric approaches, achieving an average weighted IoU score of 0.971220.038 and a Hausdorff distance at 95 percentile of 0.490120.571 mm. We also release Poseidon's Teeth 3D (Poseidon3D), a novel dataset of real orthodontic cases with various dental anomalies like teeth crowding and missing teeth.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0009-0006-8201-0035 