Vysvětlitelné přístupy umělé inteligence pro řešení stochastických diferenciálních rovnic

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. Ing. Petr Tomášek, Ph.D. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) Prof. Bruno Rubino, Ph.D. (člen) Prof. Corrado Lattanzio, Ph.D. (člen) Gennaro Ciampa, Ph.D. (člen)cs
but.defenceThe student presented their thesis, after which the secretary read aloud the evaluations provided by both the supervisor and the opponent. The student responded to the opponent's questions in a satisfactory manner.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorKůdela, Jakuben
dc.contributor.authorKhan, Shahmiren
dc.contributor.refereeŠeda, Milošen
dc.date.created2025cs
dc.description.abstractThis thesis presents a symbolic regression approach for solving stochastic differential equations (SDEs) using Grammatical Evolution (GE). The goal is to generate interpretable expressions that approximate the solution trajectories of these equations. Unlike traditional methods such as the Euler-Maruyama scheme, which only provide numerical approximations, the proposed approach aims to produce closed-form symbolic representations of complex stochastic models. Building on the motivation for explainable methods, we first review the GPAD (Genetic Programming and Automatic Differentiation) framework and its use of symbolic modeling for SDEs and their solutions. However, due to practical challenges in implementing this approach, we developed an alternative approach by expanding the Python-based PonyGE2 framework. The proposed method learns symbolic expressions from simulated datasets composed of time and Wiener process values as inputs and the corresponding process values as outputs. We apply this framework to several well-known SDEs, including the Geometric Brownian Motion, Ornstein–Uhlenbeck process, and Cox–Ingersoll–Ross model. Both known and unknown realizations of the Wiener process are considered to assess the accuracy and generalization of the GE approach. To evaluate the performance of the symbolic models, we generate multiple trajectories for each process and compute the mean and variance over time. This statistical comparison helps us to determine how accurately the symbolic models represent the underlying dynamics of the original system. The results demonstrate that GE can recover concise and meaningful symbolic representations that reflect the underlying dynamics of the stochastic systems. This validation confirms that the symbolic models not only fit individual paths but also preserve the statistical properties of the processes. By integrating explainability into the modeling of SDEs, this work offers a new direction for transparent and flexible modeling in stochastic analysis.en
dc.description.abstractThis thesis presents a symbolic regression approach for solving stochastic differential equations (SDEs) using Grammatical Evolution (GE). The goal is to generate interpretable expressions that approximate the solution trajectories of these equations. Unlike traditional methods such as the Euler-Maruyama scheme, which only provide numerical approximations, the proposed approach aims to produce closed-form symbolic representations of complex stochastic models. Building on the motivation for explainable methods, we first review the GPAD (Genetic Programming and Automatic Differentiation) framework and its use of symbolic modeling for SDEs and their solutions. However, due to practical challenges in implementing this approach, we developed an alternative approach by expanding the Python-based PonyGE2 framework. The proposed method learns symbolic expressions from simulated datasets composed of time and Wiener process values as inputs and the corresponding process values as outputs. We apply this framework to several well-known SDEs, including the Geometric Brownian Motion, Ornstein–Uhlenbeck process, and Cox–Ingersoll–Ross model. Both known and unknown realizations of the Wiener process are considered to assess the accuracy and generalization of the GE approach. To evaluate the performance of the symbolic models, we generate multiple trajectories for each process and compute the mean and variance over time. This statistical comparison helps us to determine how accurately the symbolic models represent the underlying dynamics of the original system. The results demonstrate that GE can recover concise and meaningful symbolic representations that reflect the underlying dynamics of the stochastic systems. This validation confirms that the symbolic models not only fit individual paths but also preserve the statistical properties of the processes. By integrating explainability into the modeling of SDEs, this work offers a new direction for transparent and flexible modeling in stochastic analysis.cs
dc.description.markAcs
dc.identifier.citationKHAN, S. Vysvětlitelné přístupy umělé inteligence pro řešení stochastických diferenciálních rovnic [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025.cs
dc.identifier.other165907cs
dc.identifier.urihttp://hdl.handle.net/11012/253558
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectExplainable Artificial Intelligenceen
dc.subjectSymbolic Regressionen
dc.subjectGrammatical Evolutionen
dc.subjectGenetic Programmingen
dc.subjectEvolutionary Algorithmsen
dc.subjectStochastic Calculusen
dc.subjectStochastic Differential Equations.en
dc.subjectExplainable Artificial Intelligencecs
dc.subjectSymbolic Regressioncs
dc.subjectGrammatical Evolutioncs
dc.subjectGenetic Programmingcs
dc.subjectEvolutionary Algorithmscs
dc.subjectStochastic Calculuscs
dc.subjectStochastic Differential Equations.cs
dc.titleVysvětlitelné přístupy umělé inteligence pro řešení stochastických diferenciálních rovnicen
dc.title.alternativeExplainable artificial intelligence approaches for solving stochastic differential equationscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-17cs
dcterms.modified2025-06-20-12:24:34cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid165907en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:57:57en
sync.item.modts2025.08.26 19:47:10en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
2.83 MB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_165907.html
Size:
10.91 KB
Format:
Hypertext Markup Language
Description:
file review_165907.html

Collections