Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications

Loading...
Thumbnail Image

Authors

Podroužek, Jan
Marcon, Marco
Ninčevič, Krešimir
Wendner, Roman

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The aim of this paper is to introduce and characterize, both experimentally and numerically, three classes of non-traditional 3D infill patterns at three scales as an alternative to classical 2D infill patterns in the context of additive manufacturing and structural applications. The investigated 3D infill patterns are biologically inspired and include Gyroid, Schwarz D and Schwarz P. Their selection was based on their beneficial mechanical properties, such as double curvature, are not only known from nature but also emerge from numerical topology optimization. A classical 2D hexagonal pattern has been used as a reference. Mechanical performance of 14 cylindrical specimens in compression is quantitatively related to stiffness, peak load and weight. Digital image correlation provides accurate full-field deformation measurements and insights into periodic features of the surface strain field. The associated variability, which is inherent to the production and testing process, has been evaluated for 3 identical Gyroid specimens. The nonlinear material model for the preliminary FEM analysis is based on tensile test specimens with 3 different slicing strategies. The 3D infill patterns are generally useful when the extrusion orientation cannot be aligned with the build orientation and the principal stress field, i.e. in case of generative design, such as the presented branching structure, or any complex shape and boundary condition.
The aim of this paper is to introduce and characterize, both experimentally and numerically, three classes of non-traditional 3D infill patterns at three scales as an alternative to classical 2D infill patterns in the context of additive manufacturing and structural applications. The investigated 3D infill patterns are biologically inspired and include Gyroid, Schwarz D and Schwarz P. Their selection was based on their beneficial mechanical properties, such as double curvature, are not only known from nature but also emerge from numerical topology optimization. A classical 2D hexagonal pattern has been used as a reference. Mechanical performance of 14 cylindrical specimens in compression is quantitatively related to stiffness, peak load and weight. Digital image correlation provides accurate full-field deformation measurements and insights into periodic features of the surface strain field. The associated variability, which is inherent to the production and testing process, has been evaluated for 3 identical Gyroid specimens. The nonlinear material model for the preliminary FEM analysis is based on tensile test specimens with 3 different slicing strategies. The 3D infill patterns are generally useful when the extrusion orientation cannot be aligned with the build orientation and the principal stress field, i.e. in case of generative design, such as the presented branching structure, or any complex shape and boundary condition.

Description

Citation

Materials. 2019, vol. 12, issue 3, p. 1-12.
https://www.mdpi.com/1996-1944/12/3/499

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO