DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome

dc.contributor.authorHankeová, Simonacs
dc.contributor.authorŠalplachta, Jakubcs
dc.contributor.authorZikmund, Tomášcs
dc.contributor.authorKavková, Michaelacs
dc.contributor.authorVan Hul, Noemics
dc.contributor.authorBřínek, Adamcs
dc.contributor.authorSmékalová, Veronikacs
dc.contributor.authorLázňovský, Jakubcs
dc.contributor.authorDawit, Fevencs
dc.contributor.authorJaroš, Josefcs
dc.contributor.authorBryja, Vítězslavcs
dc.contributor.authorLendahl, Urbancs
dc.contributor.authorellis, ewacs
dc.contributor.authorNemeth, Antalcs
dc.contributor.authorFischler, Björncs
dc.contributor.authorHanneso, Edouardcs
dc.contributor.authorKaiser, Jozefcs
dc.contributor.authorAndersson, Emma Rachelcs
dc.coverage.issue10cs
dc.date.accessioned2021-08-13T14:53:52Z
dc.date.available2021-08-13T14:53:52Z
dc.date.issued2021-02-26cs
dc.description.abstractOrgan function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.en
dc.formattextcs
dc.format.extent1-29cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationeLife. 2021, issue 10, p. 1-29.en
dc.identifier.doi10.7554/eLife.60916cs
dc.identifier.issn2050-084Xcs
dc.identifier.other170436cs
dc.identifier.urihttp://hdl.handle.net/11012/201001
dc.language.isoencs
dc.publisherELIFE SCIENCES PUBLICATIONS LTDcs
dc.relation.ispartofeLifecs
dc.relation.urihttps://elifesciences.org/articles/60916#contentcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2050-084X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAlagille syndromeen
dc.subjectMicroCTen
dc.subjectcholangiopathyen
dc.subjecthumanen
dc.subjectmouseen
dc.subjectphysics of living systemsen
dc.subjectregenerative medicineen
dc.subjectresinen
dc.subjectstem cellsen
dc.subjectvasculature.en
dc.titleDUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndromeen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-170436en
sync.item.dbtypeVAVen
sync.item.insts2021.08.13 16:53:52en
sync.item.modts2021.08.13 16:14:12en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé instrumentace a metody pro charakterizace materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
elife60916v1.pdf
Size:
8.83 MB
Format:
Adobe Portable Document Format
Description:
elife60916v1.pdf