Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate

dc.contributor.authorSiddiqui, Malihacs
dc.contributor.authorSalamon, Davidcs
dc.coverage.issue12cs
dc.coverage.volume107cs
dc.date.accessioned2025-06-11T05:56:37Z
dc.date.available2025-06-11T05:56:37Z
dc.date.issued2024-12-01cs
dc.description.abstractExtensive research efforts have been focused on customizing the microstructure, macrostructure, and phase composition of calcium phosphate for enhanced biocompatibility and bioactivity in scaffolds for bone substitutes. Despite significant progress, achieving precise phase composition and microstructure remains a challenge, primarily due to the necessity of scaffold sintering. This study addresses the challenges in developing customized patient-specific bone substitutes by proposing a sequential approach that reduces processing steps while providing control over the phase and morphology of the scaffolds' structure. The methodology utilizes freeze-casting and sintering for highly porous the scaffolds' preparation, followed by hydrothermal treatment to modify the microstructure. The introduction of CaCO3 induces a phase transformation of tricalcium phosphate, increasing the hydroxyapatite content, while the overall macrostructure retains the characteristics of freeze-casting. The surface morphology undergoes a transition from equiaxial grains to whiskers-like structures and hexagonal rods, impacting compressive strength. Following hydrothermal treatment, the formation of whiskers-like hydroxyapatite grains leads to a notable strength increase from 2.8 to 5.7 MPa. Remarkably, the scaffolds undergo nearly complete phase transformation, shifting from 100% tricalcium phosphate to 99% hydroxyapatite, all while conserving the macrostructure. Scaffolds with enhanced porosity and altered surface morphologies were created through freeze-casting, sintering, and subsequent hydrothermal treatment. The modified scaffolds maintained their overall macrostructure, displaying high porosity (>= 60%), diverse hydroxyapatite phase ratios (0-99%), and a compressive strength of 5.7 MPa. This study introduces a novel approach employing hydrothermal treatment for microstructural and phase customization of sintered scaffolds. imageen
dc.formattextcs
dc.format.extent7994-8006cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJOURNAL OF THE AMERICAN CERAMIC SOCIETY. 2024, vol. 107, issue 12, p. 7994-8006.en
dc.identifier.doi10.1111/jace.20053cs
dc.identifier.issn1551-2916cs
dc.identifier.orcid0000-0002-2221-8743cs
dc.identifier.orcid0000-0002-3267-5235cs
dc.identifier.other197278cs
dc.identifier.researcheridAAD-6753-2020cs
dc.identifier.researcheridA-6219-2012cs
dc.identifier.scopus57192423210cs
dc.identifier.scopus15822747200cs
dc.identifier.urihttps://hdl.handle.net/11012/251914
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofJOURNAL OF THE AMERICAN CERAMIC SOCIETYcs
dc.relation.urihttps://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.20053cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1551-2916/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcalcium phosphateen
dc.subjectcompressive strength freeze-castingen
dc.subjecthydrothermalen
dc.subjectscaffoldsen
dc.titleScaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphateen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/GA0/GA/GA23-06856Scs
sync.item.dbidVAV-197278en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 07:56:37en
sync.item.modts2025.06.11 07:33:26en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilá multifunkční keramikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024Siddiqui.pdf
Size:
7.08 MB
Format:
Adobe Portable Document Format
Description:
file 2024Siddiqui.pdf