Genomic and Phenotypic Comparison of Polyhydroxyalkanoates Producing Strains of genus Caldimonas/Schlegelella

Loading...
Thumbnail Image

Authors

Musilová, Jana
Kouřilová, Xenie
Heřmánková, Kristýna
Bezdíček, Matěj
Ieremenko, Anastasiia
Dvořák, Pavel
Obruča, Stanislav
Sedlář, Karel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Polyhydroxyalkanoates (PHAs) have emerged as an environmentally friendly alternative to conventional polyesters. In this study, we present a comprehensive analysis of the genomic and phenotypic characteristics of three non-model thermophilic bacteria known for their ability to produce PHAs: Schlegelella aquatica LMG 23380T, Caldimonas thermodepolymerans DSM 15264, and C. thermodepolymerans LMG 21645 and the results were compared with the type strain C. thermodepolymerans DSM 15344T. We have assembled the first complete genomes of these three bacteria and performed the structural and functional annotation. This analysis has provided valuable insights into the biosynthesis of PHAs and has allowed us to propose a comprehensive scheme of carbohydrate metabolism in the studied bacteria. Through phylogenomic analysis, we have confirmed the synonymity between Caldimonas and Schlegelella genera, and further demonstrated that S. aquatica and S. koreensis, currently classified as orphan species, belong to the Caldimonas genus.
Polyhydroxyalkanoates (PHAs) have emerged as an environmentally friendly alternative to conventional polyesters. In this study, we present a comprehensive analysis of the genomic and phenotypic characteristics of three non-model thermophilic bacteria known for their ability to produce PHAs: Schlegelella aquatica LMG 23380T, Caldimonas thermodepolymerans DSM 15264, and C. thermodepolymerans LMG 21645 and the results were compared with the type strain C. thermodepolymerans DSM 15344T. We have assembled the first complete genomes of these three bacteria and performed the structural and functional annotation. This analysis has provided valuable insights into the biosynthesis of PHAs and has allowed us to propose a comprehensive scheme of carbohydrate metabolism in the studied bacteria. Through phylogenomic analysis, we have confirmed the synonymity between Caldimonas and Schlegelella genera, and further demonstrated that S. aquatica and S. koreensis, currently classified as orphan species, belong to the Caldimonas genus.

Description

Citation

Computational and Structural Biotechnology Journal. 2023, vol. 21, issue November, p. 5372-5381.
https://www.sciencedirect.com/science/article/pii/S2001037023004075

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO