Overcoming Unknown Measurement Noise Powers in Multistatic Target Localization: A Cyclic Minimization and Joint Estimation Algorithm

Loading...
Thumbnail Image

Authors

Yang, J.
Liu, C.
Huang, J.
Hu, D.
Zhao, C.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper investigates the issue of multistatic target localization using measurements including angle of arrival (AOA), time delay (TD), and Doppler shift (DS). We delve into a practically driven nonideal localization scenario where the measurement noise powers remain unknown. An algorithm that jointly estimates target position-velocity and measurement noise powers is proposed. Initially, an optimization model for the joint estimation is developed following the maximum likelihood estimation criterion. Subsequently, we cyclically minimize the optimization model to yield estimates for target position-velocity and measurement noise powers. The Cramer-Rao lower bound (CRLB) for this joint estimation is also derived. Contrary to existing algorithms, our proposed method eliminates the need for prior knowledge of measurement noise powers, simultaneously estimating the target position-velocity and measurement noise powers. Simulation results indicate superior localization accuracy with our algorithm, particularly in scenarios with unknown measurement noise powers. Furthermore, at moderate noise levels, the algorithm's estimation accuracy for target position-velocity and measurement noise powers meets the CRLB.

Description

Citation

Radioengineering. 2023 vol. 32, č. 3, s. 415-424. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_03_0415_0424.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO