Meta-Reinforcement Learning in Time-Varying UAV Communications: Adaptive Anti-Jamming Channel Selection

dc.contributor.authorHu, L.
dc.contributor.authorShao, Y.
dc.contributor.authorQian, Y.
dc.contributor.authorDu, F.
dc.contributor.authorLi, J.
dc.contributor.authorLin, Y.
dc.contributor.authorWang, Z.
dc.coverage.issue3cs
dc.coverage.volume33cs
dc.date.accessioned2025-04-04T11:12:54Z
dc.date.available2025-04-04T11:12:54Z
dc.date.issued2024-09cs
dc.description.abstractUnmanned Aerial Vehicle (UAV) communication networks are vulnerable to malicious jamming and co-channel interference, deteriorating the performance of the networks. Therefore, the exploration of anti-jamming methods to enhance communication security becomes a significant challenge. In this paper, we propose a novel anti-jamming channel selection scheme in a multi-channel multi-UAV network. We first formulate the anti-jamming problem as a Partially Observable Stochastic Game (POSG), where the UAV pairs with partial observability compete for a limited number of communication channels against a Markov jammer. To ensure rapid adaptation to the dynamic jamming environment, we propose a Meta-Mean-Field Q-learning (MMFQ) algorithm, which provides a Nash Equilibrium (NE) solution to the POSG problem. Furthermore, we derive the expressions of the upper bound for the loss function of MMFQ and prove the convergence of the proposed algorithm. Simulation results demonstrate that the proposed algorithm can achieve a superior average reward compared to the benchmark algorithms, facilitating throughput enhancement and resource utilization increase, especially for large-scale UAV communication networks.en
dc.formattextcs
dc.format.extent417-431cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2024 vol. 33, iss. 3, s. 417-431. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2024.0417en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/250702
dc.language.isoencs
dc.publisherRadioengineering Societycs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2024/24_03_0417_0431.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectUnmanned aerial vehicle (UAV) communicationen
dc.subjectanti-jammingen
dc.subjectmeta-reinforcement learningen
dc.subjectmean fielden
dc.titleMeta-Reinforcement Learning in Time-Varying UAV Communications: Adaptive Anti-Jamming Channel Selectionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
24_03_0417_0431.pdf
Size:
757.26 KB
Format:
Adobe Portable Document Format

Collections