Wavelet Support Vector Machine Algorithm in Power Analysis Attacks

dc.contributor.authorHou, Shourong
dc.contributor.authorZhou, Yujie
dc.contributor.authorLiu, Hongming
dc.contributor.authorZhu, Nianhao
dc.coverage.issue3cs
dc.coverage.volume26cs
dc.date.accessioned2017-09-15T08:41:56Z
dc.date.available2017-09-15T08:41:56Z
dc.date.issued2017-09cs
dc.description.abstractTemplate attacks and machine learning are two powerful methods in the field of side channel attack. In this paper, we aimed to contribute to the novel application of support vector machine (SVM) algorithm in power analysis attacks. Especially, wavelet SVM can approximate arbitrary nonlinear functions due to the multidimensional analysis of wavelet functions and the generalization of SVM. Three independent datasets were selected to compare the performance of template attacks and SVM based on various kernels. The results indicated that wavelet SVM successfully recovered the offset value of the masked AES implementation for each trace, which was obviously 5 to 8 percentage points higher than SVM-RBF. And also, the time required was almost reduced by 40% when using the optimal parameters of wavelet SVM. Moreover, wavelet SVM only required an average of 5.4 traces to break the secret key for the unmasked AES implementation and less than 7 traces for the masked AES implementation.en
dc.formattextcs
dc.format.extent890-902cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2017 vol. 26, č. 3, s. 890-902. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2017.0890en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/69989
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2017/17_03_0890_0902.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectPower analysis attacksen
dc.subjecttemplate attacksen
dc.subjectsupport vector machineen
dc.subjectwavelet analysisen
dc.subjectkernel functionen
dc.titleWavelet Support Vector Machine Algorithm in Power Analysis Attacksen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
17_03_0890_0902.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
Description:
Collections