Detekce graffiti tagů v obraze

Loading...
Thumbnail Image

Date

Authors

Molisch, Marek

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce je porovnat současné architektury modelů, zodpovědné za detekci objektů a použít je pro úlohu detekce graffiti tagů. Pro tyto účely byly v řešení vybrány state-of-the-art modely, které jsou podporovány frameworkem Tensorflow. Architektura Faster R-CNN byla nejpřesnější a architektura SSD nejrychlejší. Také byly provedeny experimenty s graffiti tagy z Athén na datasetu STORM, kde se zjistilo, že ke graffiti tagům je žádoucí přistupovat jako k objektům a ne jako k písmu.
The goal of this work is to compare today's architecture of object detection models and use them for the purpose of graffiti tag detection. State-of-the-art models, which are compatible with the Tensorflow framework, were used. Faster R-CNN architecture was found to be the most accurate and SSD architecture to be the fastest. Experiments with graffiti tags from Athens in the STORM dasater showed, that it is better to approach graffiti tags as objects rather than writings.

Description

Citation

MOLISCH, M. Detekce graffiti tagů v obraze [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Ing. Lukáš Burget, Ph.D. (místopředseda) doc. Mgr. Lukáš Holík, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2021-06-14

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Jak byste poučeně upravoval neuronovou síť nebo způsob jejího učení, kdybyste měl za úkol dosáhnout výrazně větší úspěšnosti detekce? Kvantifikujte Vaše rozšíření existujících datasetů a možnosti jeho použití (licence, autorství, atd.).

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO