CMF-DFE Based Adaptive Blind Equalization Using Particle Swarm Optimization

Loading...
Thumbnail Image

Authors

Tugcu, Emin
Kaya, Ismail
Yazgan, Ayhan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

The channel matched filter (CMF) is the optimum receiver providing the maximum signal to noise ratio (SNR) for the frequency selective channels. The output intersymbol interference (ISI) profile of the CMF convolved by the channel can be blindly obtained by using the autocorrelation of the received signal. Therefore, the inverse of the autocorrelation function can be used to equalize the channel passed through its own CMF. The only missing part to complete the proposed blind operation is the CMF coefficients. Therefore, in this work, the best training algorithm investigation is subjected for blind estimation of the CMF coefficients. The proposed method allows using more effective training algorithms for blind equalizations. However, the expected high performance training is obtained when the swarm intelligence is used. Unlike the stochastic gradient algorithms, the particle swarm optimization (PSO) is known to have fast convergence because its performance is independent of the characteristics of the systems used. The obtained mean square error (MSE) and bit error rate (BER) performances are promising for high performance real-time systems as an alternative to non-blind equalization techniques.

Description

Citation

Radioengineering. 2016 vol. 25, č. 1, s. 124-131. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2016/16_01_0081_0088.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported License
Citace PRO