Zvýšení rozlišení obrazu pomocí hlubokých neuronových sítí

Loading...
Thumbnail Image

Date

Authors

Bublavý, Martin

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Lekárske zobrazovanie, ktoré je základnou súčasťou súčasnej zdravotnej starostlivosti, umožňuje identifikovať a liečiť rôzne ochorenia. Prvky ako šum a nízke rozlíšenie však môžu mať negatívny vplyv na kvalitu lekárskych snímkov. V tejto práci bolo skúmané, ako zlepšiť rozlíšenie a kvalitu lekárskych fotografií pomocou MedSRGAN, modelu hlbokého učenia postaveného na generatívnych adverzných sieťach (GAN). Sieť MedSRGAN bola implementovaná a aplikovaná na počítačovú tomografiu (CT), jedna z široko využívaných lekárskych zobrazovacích metód.
The ability to identify and treat a variety of medical diseases is made possible by medical imaging, which is an essential component of contemporary healthcare. Yet, elements like noise and low resolution can have a negative impact on the quality of medical photographs. In this thesis, how to enhance the resolution and quality of medical images was investigated using MedSRGAN, a deep learning model built on generative adversarial networks (GANs). MedSRGAN was implemented and then applied to computed tomography (CT), one of the most utilized medical imaging methods.

Description

Citation

BUBLAVÝ, M. Zvýšení rozlišení obrazu pomocí hlubokých neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

sk

Study field

Informační technologie

Comittee

doc. Ing. Martin Čadík, Ph.D. (předseda) doc. Ing. Zdeněk Vašíček, Ph.D. (člen) Ing. Šárka Květoňová, Ph.D. (člen) Ing. Filip Orság, Ph.D. (člen) doc. Ing. Michal Španěl, Ph.D. (člen)

Date of acceptance

2023-06-13

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm C.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO