Monotonicity character of convex combinations of two sequences generated by the square of the cube root function
| dc.contributor.author | Stevic, Stevo | cs |
| dc.contributor.author | Iričanin, Bratislav D. | cs |
| dc.contributor.author | Kosmala, Witold | cs |
| dc.contributor.author | Šmarda, Zdeněk | cs |
| dc.coverage.issue | 122 | cs |
| dc.coverage.volume | 2025 | cs |
| dc.date.accessioned | 2025-10-30T20:04:41Z | |
| dc.date.available | 2025-10-30T20:04:41Z | |
| dc.date.issued | 2025-10-15 | cs |
| dc.description.abstract | There is a natural connection between the finite sums of the reciprocals of the squares of the cube roots of positive natural numbers and two definite integrals. By using the differences between the sums and the integrals are formed in a natural way two sequences of real numbers converging to the same finite limit. We completely determine the monotonicity character of the sequences which are obtained by convex combinations of the two sequences, in an elegant way. We also present an interesting result about monotonicity character of a real function on the interval , which is used in the proof of the main result. The results are important for solving difference equations. | en |
| dc.description.abstract | There is a natural connection between the finite sums of the reciprocals of the squares of the cube roots of positive natural numbers and two definite integrals. By using the differences between the sums and the integrals are formed in a natural way two sequences of real numbers converging to the same finite limit. We completely determine the monotonicity character of the sequences which are obtained by convex combinations of the two sequences, in an elegant way. We also present an interesting result about monotonicity character of a real function on the interval , which is used in the proof of the main result. The results are important for solving difference equations. | en |
| dc.format | text | cs |
| dc.format.extent | 12 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Journal of Inequalities and Applications. 2025, vol. 2025, issue 122, 12 p. | en |
| dc.identifier.doi | 10.1186/s13660-025-03375-7 | cs |
| dc.identifier.issn | 1029-242X | cs |
| dc.identifier.orcid | 0000-0002-7202-9764 | cs |
| dc.identifier.orcid | 0000-0001-7457-7716 | cs |
| dc.identifier.orcid | 0000-0002-9559-6630 | cs |
| dc.identifier.other | 199211 | cs |
| dc.identifier.researcherid | A-8046-2013 | cs |
| dc.identifier.researcherid | AAA-1702-2022 | cs |
| dc.identifier.scopus | 23973557200 | cs |
| dc.identifier.uri | https://hdl.handle.net/11012/255611 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | Journal of Inequalities and Applications | cs |
| dc.relation.uri | https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-025-03375-7 | cs |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1029-242X/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
| dc.subject | Real sequence | en |
| dc.subject | Monotone sequence | en |
| dc.subject | Eventual monotonicity | en |
| dc.subject | The cube root function | en |
| dc.subject | Real sequence | |
| dc.subject | Monotone sequence | |
| dc.subject | Eventual monotonicity | |
| dc.subject | The cube root function | |
| dc.title | Monotonicity character of convex combinations of two sequences generated by the square of the cube root function | en |
| dc.title.alternative | Monotonicity character of convex combinations of two sequences generated by the square of the cube root function | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/GA0/GA/GA23-06476S | cs |
| sync.item.dbid | VAV-199211 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.30 21:04:41 | en |
| sync.item.modts | 2025.10.30 12:32:54 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s13660025033757.pdf
- Size:
- 1.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- file s13660025033757.pdf
