Distributed Aggregate Function Estimation by Biphasically Configured Metropolis-Hasting Weight Model
dc.contributor.author | Kenyeres, Martin | |
dc.contributor.author | Kenyeres, Jozef | |
dc.contributor.author | Skorpil, Vladislav | |
dc.contributor.author | Burget, Radim | |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 26 | cs |
dc.date.accessioned | 2017-07-25T08:20:36Z | |
dc.date.available | 2017-07-25T08:20:36Z | |
dc.date.issued | 2017-06 | cs |
dc.description.abstract | An energy-efficient estimation of an aggregate function can significantly optimize a global event detection or monitoring in wireless sensor networks. This is probably the main reason why an optimization of the complementary consensus algorithms is one of the key challenges of the lifetime extension of the wireless sensor networks on which the attention of many scientists is paid. In this paper, we introduce an optimized weight model for the average consensus algorithm. It is called the Biphasically configured Metropolis-Hasting weight model and is based on a modification of the Metropolis-Hasting weight model by rephrasing the initial configuration into two parts. The first one is the default configuration of the Metropolis-Hasting weight model, while, the other one is based on a recalculation of the weights allocated to the adjacent nodes’ incoming values at the cost of decreasing the value of the weights of the inner states. The whole initial configuration is executed in a fully-distributed manner. In the experimental section, it is proven that our optimized weight model significantly optimizes the Metropolis-Hasting weight model in several aspects and achieves better results compared with other concurrent weight models. | en |
dc.format | text | cs |
dc.format.extent | 479-495 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2017 vol. 26, č. 2, s. 479-495. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2017.0479 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | http://hdl.handle.net/11012/69266 | |
dc.language.iso | en | cs |
dc.publisher | Společnost pro radioelektronické inženýrství | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2017/17_02_0479_0495.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International License | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Distributed computing | en |
dc.subject | aggregate function | en |
dc.subject | average consensus algorithm | en |
dc.subject | metropolis-hasting weight model | en |
dc.subject | wireless sensor networks | en |
dc.title | Distributed Aggregate Function Estimation by Biphasically Configured Metropolis-Hasting Weight Model | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta eletrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 17_02_0479_0495.pdf
- Size:
- 1.21 MB
- Format:
- Adobe Portable Document Format
- Description: