Boron and nitrogen dopants in graphene have opposite effects on the electrochemical detection of explosive nitroaromatic compounds

Loading...
Thumbnail Image

Authors

Rohaizad, Nasuha
Sofer, Zdeněk
Pumera, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER SCIENCE INC
Altmetrics

Abstract

A multitude of strategies to alter the properties of graphene, a representative two-dimensional material, has been proposed with the aim of improving its performance and capabilities. Whilst in general doping with any element is reported in the literature as an electrochemistry enhancing process, there is no real reason for dopants to always be beneficial. Here we doped graphene with boron or nitrogen and show that they have completely opposite properties for electrochemical detection of 2,4,6-trinitrotoluene (TNT). Nitrogen-doped graphene enhances the signal of TNT, whereas boron-doped graphene reduces the response when compared to undoped graphene. This debunks most of the papers claiming that doping results in excellent electrochemistry.
A multitude of strategies to alter the properties of graphene, a representative two-dimensional material, has been proposed with the aim of improving its performance and capabilities. Whilst in general doping with any element is reported in the literature as an electrochemistry enhancing process, there is no real reason for dopants to always be beneficial. Here we doped graphene with boron or nitrogen and show that they have completely opposite properties for electrochemical detection of 2,4,6-trinitrotoluene (TNT). Nitrogen-doped graphene enhances the signal of TNT, whereas boron-doped graphene reduces the response when compared to undoped graphene. This debunks most of the papers claiming that doping results in excellent electrochemistry.

Description

Citation

Electrochemistry Communications. 2020, vol. 112, issue 1, p. 1-5.
https://www.sciencedirect.com/science/article/pii/S1388248120300102?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO