Energy gap measurements based on enhanced absorption coefficient calculation from transmittance and reflectance raw data

dc.contributor.authorAllaham, Mohammad Mahmoudcs
dc.contributor.authorDallaev, Rashidcs
dc.contributor.authorBurda, Danielcs
dc.contributor.authorSobola, Dinaracs
dc.contributor.authorNebojsa, Aloiscs
dc.contributor.authorKnápek, Alexandrcs
dc.contributor.authorMousa, Marwancs
dc.contributor.authorKolařík, Vladimírcs
dc.coverage.issue1cs
dc.coverage.volume99cs
dc.date.accessioned2024-05-10T13:45:35Z
dc.date.available2024-05-10T13:45:35Z
dc.date.issued2024-01-18cs
dc.description.abstractThe absorption coefficient plays an important role in studying and characterizing semiconducting materials. It is an important parameter to study the mechanism of photons absorption within the structure of the studied material. Thus, it helps to study the several types of charge carrier transport along with the energy band structure and its defects. In literature, a formula was reported to precisely calculate the absorption coefficient from raw data of transmittance and reflectance of electromagnetic radiation. However, the reported formula has several issues limiting its validity in the literature. In this paper, we provide a more mathematically accurate form of this equation to precisely obtain the absorption coefficient from the raw data, by considering the total internal reflection at the different interfaces. Moreover, the equation is tested by simulated data and is applied to study the optical characteristics of a single-component epoxy resin from its transmittance and reflectance raw data.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPHYSICA SCRIPTA. 2024, vol. 99, issue 1, p. 1-9.en
dc.identifier.doi10.1088/1402-4896/ad1cb8cs
dc.identifier.issn1402-4896cs
dc.identifier.orcid0000-0002-4931-0419cs
dc.identifier.orcid0000-0002-6823-5725cs
dc.identifier.orcid0000-0002-0008-5265cs
dc.identifier.orcid0000-0002-4177-4040cs
dc.identifier.orcid0000-0003-0752-8214cs
dc.identifier.other187384cs
dc.identifier.researcheridABE-7009-2021cs
dc.identifier.researcheridAAE-8648-2020cs
dc.identifier.researcheridG-1175-2019cs
dc.identifier.researcheridE-6640-2013cs
dc.identifier.scopus57216492743cs
dc.identifier.scopus57201461813cs
dc.identifier.scopus57189064262cs
dc.identifier.scopus36544102200cs
dc.identifier.urihttps://hdl.handle.net/11012/245482
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofPHYSICA SCRIPTAcs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1402-4896/ad1cb8cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1402-4896/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAbsorption coefficientsen
dc.subjectCharge transitionen
dc.subjectEnhanced absorptionen
dc.subjectGap measurementsen
dc.subjectMeasurement-baseden
dc.subjectPhotons absorptionen
dc.subjectSemiconducting materialsen
dc.subjectTauc plotsen
dc.subjectTransmittance and reflectancesen
dc.subjectUrbach energyen
dc.titleEnergy gap measurements based on enhanced absorption coefficient calculation from transmittance and reflectance raw dataen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-187384en
sync.item.dbtypeVAVen
sync.item.insts2024.05.10 15:45:34en
sync.item.modts2024.05.10 15:13:14en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav fyzikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé keramické materiálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Allaham_2024_Phys._Scr._99_025952.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
file Allaham_2024_Phys._Scr._99_025952.pdf