A misbehavior detection framework for cooperative intelligent transport systems

dc.contributor.authorMangla, Cherrycs
dc.contributor.authorRani, Shallics
dc.contributor.authorHerencsár, Norbertcs
dc.coverage.issue0cs
dc.coverage.volume0cs
dc.date.issued2022-09-16cs
dc.description.abstractWith changing times, the need for security increases in all fields, whether we talk about cloud networks or vehicular networks. In every place, it has its importance, but in vehicular networks where the lives of human beings are involved, security becomes the topmost priority. Therefore, this article aims to shed light on Misbehavior Detection Framework (MDF) used in the Cooperative Intelligent Transport Systems community. Here, MDF keeps an eye on malicious entities on the roads. It is done by regularly evaluating two main checks: consistency and local plausibility. These checks are done by Intelligent Transport System Stations. All the messages received through Vehicle-to-Everything are scrutinized through this model. After that, all the messages are evaluated by local detection mechanisms to decide the holistic message's plausibility. This article mainly focuses on the logic behind the proposed Misbehavior Detection Framework providing more security, evaluating various Machine Learning-based models to ensure one best out of all based on quality and computation latency of all models along with the results of various parameters, such as Recall, Precision, F1 Score, Accuracy, Bookmaker Informedness, Markedness, Mathews Correlation Coefficient, Kappa, and achieved the best results.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationISA TRANSACTIONS. 2022, vol. 0, issue 0, p. 1-11.en
dc.identifier.doi10.1016/j.isatra.2022.08.029cs
dc.identifier.issn0019-0578cs
dc.identifier.orcid0000-0002-9504-2275cs
dc.identifier.other178994cs
dc.identifier.researcheridA-6539-2009cs
dc.identifier.scopus23012051100cs
dc.identifier.urihttp://hdl.handle.net/11012/208459
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofISA TRANSACTIONScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0019057822004323cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0019-0578/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectC-ITS Architectureen
dc.subjectCooperative Intelligent Transportationen
dc.subjectMisbehavior Detectionen
dc.subjectSecurityen
dc.titleA misbehavior detection framework for cooperative intelligent transport systemsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-178994en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:42:28en
sync.item.modts2025.01.17 18:48:28en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CMangla_et_al_ISA_Transactions_accepted.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
CMangla_et_al_ISA_Transactions_accepted.pdf