Novel metamaterial platform with piezoelectric sensors for self-sensing mechanical support

dc.contributor.authorSlabý, Vojtěchcs
dc.contributor.authorBajer, Jancs
dc.contributor.authorMarcián, Petrcs
dc.contributor.authorHrstka, Miroslavcs
dc.contributor.authorHadaš, Zdeněkcs
dc.coverage.issueMarchcs
dc.coverage.volume314cs
dc.date.accessioned2026-02-18T12:54:04Z
dc.date.issued2026-02-11cs
dc.description.abstractIn the last two decades, the field of mechanical engineering has seen growing interest in the development and utilisation of mechanical metamaterials. Artificially designed materials are intended to alter the mechanical properties of structures significantly, thereby enhancing their resilience, adaptability, and efficiency. This research focuses not only on strengthening structural strength and durability but also on enabling structural health monitoring and vibration mitigation. Modern computational modelling, with coupled-field analysis, allows engineers to design smart systems that integrate piezoelectric elements into complex geometric structures. These smart piezoelectric elements, here embedded in auxetic reentrant unit cells, offer valuable insights into the behaviour of the host structure under various conditions. This integration facilitates the assessment of electromechanical responses, thereby enabling the development of more intelligent and responsive structural systems. The current research focuses on developing a computational model and creating experimental prototypes for self-sensing mechanical support. This support serves as a load-bearing element of the host structure while simultaneously enabling the generation of vibrational signals in response to external stimuli. Piezoceramic elements enable the support to function as a sensor, detecting external forces or environmental vibrations. Additionally, this structure opens new possibilities for studying mechanical vibration attenuation and the temporal decay of vibrations. The combination of advanced metamaterial design, computational tools, and integrated smart materials creates a new approach for structural health monitoring and vibration attenuation. Ultimately, such a system aims to develop a better understanding of sustainable structures that can adapt to and respond to their environment while maintaining optimal structural rigidity and functionality.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationInternational Journal of Mechanical Sciences. 2026, vol. 314, issue March, p. 1-15.en
dc.identifier.doi10.1016/j.ijmecsci.2026.111387cs
dc.identifier.issn0020-7403cs
dc.identifier.orcid0009-0008-7340-2824cs
dc.identifier.orcid0009-0004-0513-9957cs
dc.identifier.orcid0000-0002-9458-9690cs
dc.identifier.orcid0000-0002-3169-3159cs
dc.identifier.orcid0000-0002-9097-1550cs
dc.identifier.other201243cs
dc.identifier.researcheridHCI-4088-2022cs
dc.identifier.researcheridE-7359-2017cs
dc.identifier.researcheridR-9211-2016cs
dc.identifier.researcheridI-4299-2014cs
dc.identifier.scopus58066088900cs
dc.identifier.scopus55156647700cs
dc.identifier.scopus24767676300cs
dc.identifier.urihttps://hdl.handle.net/11012/256277
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofInternational Journal of Mechanical Sciencescs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0020740326002432cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0020-7403/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSmart structuresen
dc.subjectMechanical metamaterialsen
dc.subjectVibrationen
dc.subjectEmbedded piezoelectric transducers (PZT)en
dc.subjectResonance controlen
dc.subjectSelf-sensing mechanical structureen
dc.titleNovel metamaterial platform with piezoelectric sensors for self-sensing mechanical supporten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-201243en
sync.item.dbtypeVAVen
sync.item.insts2026.02.18 13:54:04en
sync.item.modts2026.02.18 13:33:04en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0020740326002432main.pdf
Size:
12.64 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0020740326002432main.pdf