Efficient Integration of Machine Learning into District Heating Predictive Models

Loading...
Thumbnail Image

Authors

Kudela, Libor
Chýlek, Radomír
Pospíšil, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Modern control strategies for district-level heating and cooling supply systems pose a difficult challenge. In order to integrate a wide range of hot and cold sources, these new systems will rely heavily on accumulation and much lower operating temperatures. This means that predictive models advising the control strategy must take into account long-lasting thermal effects but must not be computationally too expensive, because the control would not be possible in practice. This paper presents a simple but powerful systematic approach to reducing the complexity of individual components of such models. It makes it possible to combine human engineering intuition with machine learning and arrive at comprehensive and accurate models. As an example, a simple steady-state heat loss of buried pipes is extended with dynamics observed in a much more complex model. The results show that the process converges quickly toward reasonable solutions. The new auto-generated model performs 5 x 10(4) times faster than its complex equivalent while preserving essentially the same accuracy. This approach has great potential to enhance the development of fast predictive models not just for district heating. Only open-source software was used, while OpenModelica, Python, and FEniCS were predominantly used.
Modern control strategies for district-level heating and cooling supply systems pose a difficult challenge. In order to integrate a wide range of hot and cold sources, these new systems will rely heavily on accumulation and much lower operating temperatures. This means that predictive models advising the control strategy must take into account long-lasting thermal effects but must not be computationally too expensive, because the control would not be possible in practice. This paper presents a simple but powerful systematic approach to reducing the complexity of individual components of such models. It makes it possible to combine human engineering intuition with machine learning and arrive at comprehensive and accurate models. As an example, a simple steady-state heat loss of buried pipes is extended with dynamics observed in a much more complex model. The results show that the process converges quickly toward reasonable solutions. The new auto-generated model performs 5 x 10(4) times faster than its complex equivalent while preserving essentially the same accuracy. This approach has great potential to enhance the development of fast predictive models not just for district heating. Only open-source software was used, while OpenModelica, Python, and FEniCS were predominantly used.

Description

Citation

Energies. 2020, vol. 13, issue 23, p. 1-12.
https://www.mdpi.com/1996-1073/13/23/6381

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO