Klasifikace onemocnění COVID-19 na základě analýzy rentgenových snímků plic

Loading...
Thumbnail Image
Date
Authors
Šteflík, Dominik
ORCID
Mark
D
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Táto diplomová práca sa zaoberá vývojom a hodnotením algoritmov umelej inteligencie na klasifikáciu ochorenia COVID-19 z röntgenových snímok hrudníka. Vzhľadom na závažnosť a vplyv pandémie COVID-19 na svetovú populáciu sa schopnosť rýchlej a presnej diagnostiky ochorení z röntgenových snímok stala kritickou. Táto štúdia zhŕňa súčasné pokroky v oblasti spracovania obrazu a hĺbkového učenia s cieľom vyhodnotiť použitie viacerých moderných klasifikačných metód v praxi. Pomocou datasetu získaného z českého lekárskeho prostredia sa tieto metódy analyzujú a overujú za účelom preskúmania ich efektivity a presnosti v reálnych situáciách. Metódy vybrané pre túto štúdiu, COVID-Net, DarkCovidNet a CoroNet, boli zvolené vzhľadom na ich dostupnosť, rozšírené používanie a preukázanú účinnosť v tejto oblasti. Jadrom práce je návrh konvolučnej neurónovej siete prispôsobenej na extrakciu a učenie sa z nepatrných znakov prítomných na röntgenových snímkach svedčiacich o prítomnosti vírusu COVID-19. Táto snaha čelila značným výzvam, vyplývajúcim z rôznorodých akvizičných parametrov röntgenových snímok, ktoré môžu podstatne ovplyvniť diagnostickú presnosť. Jednotnosť týchto parametrov je rozhodujúca pre spoľahlivú analýzu, čo zdôrazňuje význam dôkladných techník predbežného spracovania. V dôsledku toho sa zaviedli pokročilé postupy normalizácie, úpravy kontrastu a rozšírenia s cieľom štandardizovať vstupné údaje. Samotná konvolučná sieť využíva sériu konvolučných, združovacích a plne prepojených vrstiev, ktoré sú optimalizované na zvládnutie odlišností prítomných v lekárskych obrazových dátach. Architektúra siete obsahuje mechanizmus pozornosti implementovaný prostredníctvom bloku stlačenia a excitácie na dynamické nastavenie významnosti rôznych kanálov vo vstupnom obraze. Integráciou týchto prvkov je model siete vycvičený tak, aby sa zameral na podstatné rysy v rámci röntgenových snímok, čo mu umožňuje efektívne rozoznávať nepatrné indikátory ochorenia COVID-19. Okrem iného sa v tejto práci pojednáva o~potenciáli integrácie takýchto diagnostických nástrojov riadených umelou inteligenciou do existujúcich infraštruktúr zdravotnej starostlivosti s cieľom zlepšiť včasnú detekciu a liečbu ochorenia COVID-19. Zistenia naznačujú, že využitie umelej inteligencie v lekárskom zobrazovaní môže výrazne pomôcť pri riešení a kontrole epidémií ochorení, čo v konečnom dôsledku prispieva k lepším zdravotníckym výsledkom.
This diploma thesis addresses the development and evaluation of artificial intelligence algorithms for classifying COVID-19 disease from chest X-ray images. Given the severity and impact of the COVID-19 pandemic on the global population, the ability to rapidly and accurately diagnose diseases from radiographic images has become critical. This study synthesizes current advancements in image processing and deep learning to evaluate the application of several novel classification methods in practice. Using a dataset obtained from a Czech medical environment, these methods are analyzed and validated in order to examine their effectiveness and accuracy in real life scenarios. The methods chosen for this study, COVID-Net, DarkCovidNet, and CoroNet, were selected due to their availability, widespread use and proven effectiveness in the field. The core of the thesis is the design of a convolutional neural network tailored to extract and learn from the subtle features present in X-ray images indicative of COVID-19. This initiative confronted significant challenges posed by variable acquisition parameters of X-ray images, which can substantially affect diagnostic accuracy. The uniformity of these parameters is crucial for reliable analysis, underscoring the importance of rigorous preprocessing techniques. In response, advanced normalization, contrast adjustment, and augmentation procedures were implemented to standardize the input data. The convolutional network itself employs a series of convolutional, pooling, and fully connected layers, optimized to handle the nuanced variations present in medical imaging data. Notably, the network architecture incorporates an attention mechanism, implemented through a Squeeze-and-Excitation block, to dynamically adjust the importance of different channels in the input image. By integrating these elements, the network model is trained to focus on significant features within the X-ray images, allowing it to distinguish subtle indicators of COVID-19 effectively. Furthermore, this work discusses the potential of integrating these AI-driven diagnostic tools into existing healthcare infrastructures to enhance early detection and treatment of COVID-19. The findings indicate that leveraging artificial intelligence in medical imaging can substantially aid in managing and controlling disease outbreaks, ultimately contributing to better health outcomes.
Description
Citation
ŠTEFLÍK, D. Klasifikace onemocnění COVID-19 na základě analýzy rentgenových snímků plic [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
bez specializace
Comittee
doc. Ing. Petr Mlýnek, Ph.D. (předseda) doc. Ing. Ivo Lattenberg, Ph.D. (místopředseda) Ing. Radim Číž, Ph.D. (člen) Ing. Stanislav Uchytil, Ph. D. (člen) Ing. Vojtěch Myška, Ph.D. (člen) Ing. Michal Mahút (člen)
Date of acceptance
2024-06-06
Defence
Student prezentoval výsledky své práce a komise byla seznámena s posudky. Student obhájil diplomovou práci s výhradami a odpověděl na otázky členů komise a oponenta. Otázky komise, rozprava: 1) Spolupráce s FN Olomouc, využití v praxi? - Student vysvětlil otázku. 2) Existuje nějaký hlavní rys, dle kterého COVID-19 ve snících klasifikujete? - Student vysvětlil otázku. Otázky oponenta, posudek: 1) Vo vašej práci uvádzate postup predspracovania datasetu. A to konkrétne na obrázku 4.1, kde je možné vidieť grafické znázornenie postupnosti spracovania. V úvode spracovania máte použité metódy CLAHE a prispôsobenie histogramu. Aký je rozdiel medzi týmito metóda? Bolo by možné vymeniť poriadie aplikovania týchto metód? Prosím vysvetlite. - Student vysvětlil otázku.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO