A Detection System with Spider Web Coil-Based Wireless Charging and an Active Battery Management System

Loading...
Thumbnail Image

Authors

Pokorný, Josef
Marcoň, Petr
Kříž, Tomáš
Janoušek, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Proceedings of CIS higher education institutions and power engineering associations
Altmetrics

Abstract

The article presents a detection system with spider web coil-based wireless charging. Commonly available metal detectors are sold as handheld systems, which enable only progressive, lengthy, time-consuming search. Importantly, a part of the investigated area can thus be easily missed, and the probability that a metal object will not be found increases substantially. This problem, however, is eliminable via the automatic position tracking mode embedded in the solution obtained through our research. The proposed system facilitates using the spider web coil simultaneously for wireless charging and metal detection by pulse induction. The topology of the detector can emit variable pulse lengths, thus allowing the device to detect more types of metal and to adapt itself to the permeability of the soil. The coil has an branch in a relevant part of the winding to reduce undesirable electromagnetic interference during the charging. On the transmitting side of the topology, impedance matching is included to maintain the maximum spatial gap variability. By changing the position of the receiving side, the output voltage changes; therefore, a high efficiency DC/DC converter is employed. The individual battery cells exhibit different internal resistances, requiring us to apply a new method to balance the cells voltage. The system can be utilized on self-guided vehicles or drones; advantageously, a GPS resending the coordinates to a mesh radio allows for accurate positioning. With the mesh topology, potential cooperation between the multiple systems is possible. The setup utilizes the same coil for wireless power transfer and detection.
The article presents a detection system with spider web coil-based wireless charging. Commonly available metal detectors are sold as handheld systems, which enable only progressive, lengthy, time-consuming search. Importantly, a part of the investigated area can thus be easily missed, and the probability that a metal object will not be found increases substantially. This problem, however, is eliminable via the automatic position tracking mode embedded in the solution obtained through our research. The proposed system facilitates using the spider web coil simultaneously for wireless charging and metal detection by pulse induction. The topology of the detector can emit variable pulse lengths, thus allowing the device to detect more types of metal and to adapt itself to the permeability of the soil. The coil has an branch in a relevant part of the winding to reduce undesirable electromagnetic interference during the charging. On the transmitting side of the topology, impedance matching is included to maintain the maximum spatial gap variability. By changing the position of the receiving side, the output voltage changes; therefore, a high efficiency DC/DC converter is employed. The individual battery cells exhibit different internal resistances, requiring us to apply a new method to balance the cells voltage. The system can be utilized on self-guided vehicles or drones; advantageously, a GPS resending the coordinates to a mesh radio allows for accurate positioning. With the mesh topology, potential cooperation between the multiple systems is possible. The setup utilizes the same coil for wireless power transfer and detection.

Description

Citation

ENERGETIKA. 2021, vol. 64, issue 3, p. 219-227.
https://energy.bntu.by/jour/article/view/2071

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO