Varroa destructor detection on honey bees using hyperspectral imagery
dc.contributor.author | Duma, Zina-Sabrina | cs |
dc.contributor.author | Zemčík, Tomáš | cs |
dc.contributor.author | Bilík, Šimon | cs |
dc.contributor.author | Sihvonen, Tuomas | cs |
dc.contributor.author | Honec, Peter | cs |
dc.contributor.author | Reinikainen, Satu-Pia | cs |
dc.contributor.author | Horák, Karel | cs |
dc.coverage.issue | 9 | cs |
dc.coverage.volume | 224 | cs |
dc.date.accessioned | 2025-03-28T06:44:13Z | |
dc.date.available | 2025-03-28T06:44:13Z | |
dc.date.issued | 2024-09-01 | cs |
dc.description.abstract | Hyperspectral (HS) imagery in agriculture is becoming increasingly common. These images have the advantage of higher spectral resolution. Advanced spectral processing techniques are required to unlock the information potential in these HS images. The present paper introduces a method rooted in multivariate statistics designed to detect parasitic Varroa destructor mites on the body of western honey bee Apis mellifera, enabling easier and continuous monitoring of the bee hives. The present paper is the first to utilize hyperspectral imagery for the task, previous studies existing only for multispectral imagery. The methodology explores unsupervised (K-means++) and recently developed supervised (Kernel Flows-Partial Least-Squares, KF-PLS) methods for parasitic identification. Additionally, in light of the emergence of custom-band multispectral cameras, the present research outlines a strategy for identifying the specific wavelengths necessary for effective bee-mite separation, suitable for implementation in a custom-band camera. Illustrated with a real-case dataset, our findings demonstrate that as few as four spectral bands are sufficient for accurate parasite identification. | en |
dc.format | text | cs |
dc.format.extent | 1-11 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | COMPUTERS AND ELECTRONICS IN AGRICULTURE. 2024, vol. 224, issue 9, p. 1-11. | en |
dc.identifier.doi | 10.1016/j.compag.2024.109219 | cs |
dc.identifier.issn | 1872-7107 | cs |
dc.identifier.orcid | 0000-0003-4363-4313 | cs |
dc.identifier.orcid | 0000-0001-8797-7700 | cs |
dc.identifier.orcid | 0000-0002-5800-6187 | cs |
dc.identifier.orcid | 0000-0002-2280-3029 | cs |
dc.identifier.other | 189100 | cs |
dc.identifier.researcherid | JEP-7714-2023 | cs |
dc.identifier.scopus | 57222421244 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/250681 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | COMPUTERS AND ELECTRONICS IN AGRICULTURE | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0168169924006100 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1872-7107/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Beehive monitoring | en |
dc.subject | Hyperspectral imagery (HSI) | en |
dc.subject | Kernel partial least-squares | en |
dc.subject | Varroa destructor | en |
dc.subject | Wavelength selection | en |
dc.title | Varroa destructor detection on honey bees using hyperspectral imagery | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-189100 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.03.28 07:44:13 | en |
sync.item.modts | 2025.03.28 07:32:28 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S0168169924006100main.pdf
- Size:
- 4.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S0168169924006100main.pdf