Static solutions for Choquard equations with Coulomb potential and upper critical growth
dc.contributor.author | Chen, Sitong | cs |
dc.contributor.author | Radulescu, Vicentiu | cs |
dc.contributor.author | Shu, Muhua | cs |
dc.contributor.author | Wei, Jiuyang | cs |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 392 | cs |
dc.date.accessioned | 2025-07-17T08:59:25Z | |
dc.date.available | 2025-07-17T08:59:25Z | |
dc.date.issued | 2025-06-02 | cs |
dc.description.abstract | This paper focuses on static solutions for the following Choquard equation with zero mass and Coulomb potential (Formula presented.) where >0, 187<p6, (0,3), +3 is the upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, I:R3R is the Riesz potential, and 14|x| is the Coulomb potential. By carefully analyzing the intricate interplay between the power and Coulomb terms, we establish three types of variational geometries of the problem and prove the following existence results based on the behavior of p: the existence of two solutions, one being a local minimizer and the other of mountain-pass type, for an explicit range 0<<Const. when 187<p<3; the existence of a positive solution if takes some particular value when p=3; the existence of a ground state solution for all >0 when 4<p<6, and for two explicit ranges >Const. when 3<p<4 and p=4. Furthermore, we obtain a non-existence result for the case p=6. Particularly, we identify different compactness thresholds for above three cases, and introduce three types of test functions to control the corresponding minimax levels to be less than prescribed thresholds, thereby overcoming the loss of compactness arising from the nonlocal critical term. The derivation of these strict inequalities is a novel contribution and constitutes one of the noteworthy highlights of this work, which is available and new for the limiting Sobolev critical problem as 0. We believe that the underlying ideas have potential for future development and can be applied to a broader range of variational problems with critical growth. | en |
dc.format | text | cs |
dc.format.extent | 2081-2130 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | MATHEMATISCHE ANNALEN. 2025, vol. 392, issue 2, p. 2081-2130. | en |
dc.identifier.doi | 10.1007/s00208-025-03143-4 | cs |
dc.identifier.issn | 0025-5831 | cs |
dc.identifier.orcid | 0000-0003-4615-5537 | cs |
dc.identifier.other | 198006 | cs |
dc.identifier.researcherid | A-1503-2012 | cs |
dc.identifier.scopus | 35608668800 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/255185 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | MATHEMATISCHE ANNALEN | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s00208-025-03143-4 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0025-5831/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Schrödinger | en |
dc.subject | existence | en |
dc.subject | Sobolev | en |
dc.title | Static solutions for Choquard equations with Coulomb potential and upper critical growth | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-198006 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.07.17 10:59:25 | en |
sync.item.modts | 2025.07.17 10:34:06 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s00208025031434.pdf
- Size:
- 742.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- file s00208025031434.pdf