Pulsed Electromagnetic Field Transmission through a Small Rectangular Aperture: A Solution Based on the Cagniard-DeHoop Method of Moments

Loading...
Thumbnail Image

Authors

Štumpf, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Pulsed electromagnetic (EM) field transmission through a relatively small rectangular aperture is analyzed with the aid of the Cagniard-deHoop method of moments (CdH-MoM). The classic EM scattering problem is formulated using the EM reciprocity theorem of the time-convolution type. The resulting TD reciprocity relation is then, under the assumption of piecewise-linear, space-time magnetic-current distribution over the aperture, cast analytically into the form of discrete time-convolution equations. The latter equations are subsequently solved via a stable marching-on-in-time scheme. Illustrative examples are presented and validated using a 3D numerical EM tool.
Pulsed electromagnetic (EM) field transmission through a relatively small rectangular aperture is analyzed with the aid of the Cagniard-deHoop method of moments (CdH-MoM). The classic EM scattering problem is formulated using the EM reciprocity theorem of the time-convolution type. The resulting TD reciprocity relation is then, under the assumption of piecewise-linear, space-time magnetic-current distribution over the aperture, cast analytically into the form of discrete time-convolution equations. The latter equations are subsequently solved via a stable marching-on-in-time scheme. Illustrative examples are presented and validated using a 3D numerical EM tool.

Description

Citation

Algorithms. 2022, vol. 15, issue 6, p. 1-12.
https://www.mdpi.com/1999-4893/15/6/216

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO