Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers

dc.contributor.authorMichael, Heiglcs
dc.contributor.authorKoraltan, Sabrics
dc.contributor.authorVaňatka, Marekcs
dc.contributor.authorKraft, Robertcs
dc.contributor.authorClaas, Abertcs
dc.contributor.authorVogler, Christophcs
dc.contributor.authorSemisalova, Annacs
dc.contributor.authorChe, Pingcs
dc.contributor.authorUllrich, Aladincs
dc.contributor.authorSchmidt, Timocs
dc.contributor.authorHintermayr, Juliancs
dc.contributor.authorGrundler, Dirkcs
dc.contributor.authorFarle, Michaelcs
dc.contributor.authorUrbánek, Michalcs
dc.contributor.authorSuess, Dietercs
dc.contributor.authorAlbrecht, Manfredcs
dc.coverage.issue1cs
dc.coverage.volume12cs
dc.date.issued2021-05-10cs
dc.description.abstractSkyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D2d symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole–dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNATURE COMMUNICATIONS. 2021, vol. 12, issue 1, p. 1-9.en
dc.identifier.doi10.1038/s41467-021-22600-7cs
dc.identifier.issn2041-1723cs
dc.identifier.orcid0000-0002-4533-6136cs
dc.identifier.orcid0000-0003-0072-2073cs
dc.identifier.other171606cs
dc.identifier.researcheridU-8524-2017cs
dc.identifier.researcheridM-7120-2019cs
dc.identifier.urihttp://hdl.handle.net/11012/200990
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofNATURE COMMUNICATIONScs
dc.relation.urihttps://www.nature.com/articles/s41467-021-22600-7cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2041-1723/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSkyrmionen
dc.subjectAntiskyrmionen
dc.titleDipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayersen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-171606en
sync.item.dbtypeVAVen
sync.item.insts2024.01.19 21:38:45en
sync.item.modts2024.01.11 13:12:41en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467021226007.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format
Description:
s41467021226007.pdf