Ferric oxide nanoparticle-functionalized tungsten oxide nanoneedles and their gas sensing properties
Loading...
Date
Authors
Vallejos Vargas, Stella
Grácia, Isabel
Figueras, Eduard
Prášek, Jan
Sedláček, Jiří
Pytlíček, Zdeněk
Cané, Carles
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
The aerosol assisted chemical vapor deposition of Fe2O3 nanoparticle-tunctionalized tungsten oxide nanoneedles and their gas sensing properties are presented here. Material analysis demonstrates the incorporation of 4 to 15 nm Fe2O3 nanoparticles at the surface of the tungsten oxide nanoneedles. Gas sensing tests show improved tungsten oxide sensitivity, to toluene, ethanol and hydrogen, with the highest sensitivity (six-fold) to toluene, due to its fonctionalization with Fe2O3. This enhancement is nearly similar to the enhancement obtained when fonctionalizing tungsten oxide with platinum, suggesting that the sensing performance of tungsten oxide could be improved to a same extent using second-phase nanoparticles of metal oxides, which are less expensive and more abundant than precious metals such as Pt.
The aerosol assisted chemical vapor deposition of Fe2O3 nanoparticle-tunctionalized tungsten oxide nanoneedles and their gas sensing properties are presented here. Material analysis demonstrates the incorporation of 4 to 15 nm Fe2O3 nanoparticles at the surface of the tungsten oxide nanoneedles. Gas sensing tests show improved tungsten oxide sensitivity, to toluene, ethanol and hydrogen, with the highest sensitivity (six-fold) to toluene, due to its fonctionalization with Fe2O3. This enhancement is nearly similar to the enhancement obtained when fonctionalizing tungsten oxide with platinum, suggesting that the sensing performance of tungsten oxide could be improved to a same extent using second-phase nanoparticles of metal oxides, which are less expensive and more abundant than precious metals such as Pt.
The aerosol assisted chemical vapor deposition of Fe2O3 nanoparticle-tunctionalized tungsten oxide nanoneedles and their gas sensing properties are presented here. Material analysis demonstrates the incorporation of 4 to 15 nm Fe2O3 nanoparticles at the surface of the tungsten oxide nanoneedles. Gas sensing tests show improved tungsten oxide sensitivity, to toluene, ethanol and hydrogen, with the highest sensitivity (six-fold) to toluene, due to its fonctionalization with Fe2O3. This enhancement is nearly similar to the enhancement obtained when fonctionalizing tungsten oxide with platinum, suggesting that the sensing performance of tungsten oxide could be improved to a same extent using second-phase nanoparticles of metal oxides, which are less expensive and more abundant than precious metals such as Pt.
Description
Keywords
Functionalization , ferric oxide , platinum , AACVD , Gas sensor , Tungsten oxide , Functionalization , ferric oxide , platinum , AACVD , Gas sensor , Tungsten oxide
Citation
Procedia Engineering. 2015, vol. 120, issue 1, p. 443-446.
http://www.sciencedirect.com/science/article/pii/S1877705815023279
http://www.sciencedirect.com/science/article/pii/S1877705815023279
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

0000-0002-7415-5414 