Coarsening Kinetics of Y2O3 Dispersoid in New Grade of Fe-Al-Cr-Based ODS Alloy

Loading...
Thumbnail Image

Authors

Holzer, Jakub
Gamanov, Štěpán
Luptáková, Natália
Dlouhý, Antonín
Svoboda, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Oxide dispersion strengthened (ODS) alloys with a high content of Al are candidate materials for extreme high temperature applications such as turbine blades and other components working at temperatures significantly above 1000 degrees C. While oxidation kinetics of Fe-Al ODS steels is frequently studied, the stability and growth kinetics of strengthening oxide dispersion is a rarely studied topic. The Fe-10Al-4Cr-4Y(2)O(3) is an experimental material, fabricated at IPM by powder metallurgy route and contains much higher volume fraction of Y2O3 than similar materials. Stability and growth kinetics of Y2O3 particles of our material are studied on 24 samples aged for 0.5, 1, 2, 4, 8, 16, 32 and 72 h at 1200 degrees C, 1300 degrees C and 1400 degrees C. The sizes of at least 600 individual Y2O3 particles are measured on each sample to obtain extensive statistical analysis of the particle growth. The average particle size coarsens from 28.6 +/- 0.7 nm to 36.9 +/- 0.9 nm in 1200 degrees C series and to 81.4 +/- 5.6 nm in 1400 degrees C series. The evaluated activation energy of coarsening of Y2O3 particles is 274 +/- 65 kJ. The effects of particle coarsening on mechanical properties is demonstrated by HV measurements, which is in very good agreement with the Orowan theory.
Oxide dispersion strengthened (ODS) alloys with a high content of Al are candidate materials for extreme high temperature applications such as turbine blades and other components working at temperatures significantly above 1000 degrees C. While oxidation kinetics of Fe-Al ODS steels is frequently studied, the stability and growth kinetics of strengthening oxide dispersion is a rarely studied topic. The Fe-10Al-4Cr-4Y(2)O(3) is an experimental material, fabricated at IPM by powder metallurgy route and contains much higher volume fraction of Y2O3 than similar materials. Stability and growth kinetics of Y2O3 particles of our material are studied on 24 samples aged for 0.5, 1, 2, 4, 8, 16, 32 and 72 h at 1200 degrees C, 1300 degrees C and 1400 degrees C. The sizes of at least 600 individual Y2O3 particles are measured on each sample to obtain extensive statistical analysis of the particle growth. The average particle size coarsens from 28.6 +/- 0.7 nm to 36.9 +/- 0.9 nm in 1200 degrees C series and to 81.4 +/- 5.6 nm in 1400 degrees C series. The evaluated activation energy of coarsening of Y2O3 particles is 274 +/- 65 kJ. The effects of particle coarsening on mechanical properties is demonstrated by HV measurements, which is in very good agreement with the Orowan theory.

Description

Citation

Metals. 2022, vol. 12, issue 2, p. 1-11.
https://www.mdpi.com/2075-4701/12/2/210

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO