Augusta: From RNA-Seq to Gene Regulatory Networks and Boolean Models
dc.contributor.author | Musilová, Jana | cs |
dc.contributor.author | Vafek, Zdeněk | cs |
dc.contributor.author | Punyia, Bhanwar | cs |
dc.contributor.author | Zimmer, Ralf | cs |
dc.contributor.author | Helikar, Tomáš | cs |
dc.contributor.author | Sedlář, Karel | cs |
dc.coverage.issue | December 2024 | cs |
dc.coverage.volume | 23 | cs |
dc.date.issued | 2024-01-20 | cs |
dc.description.abstract | Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in a wide range of areas, e.g., biotechnology or medicine, with significant benefits. Unfortunately, there are only a few computational gene regulatory models of whole genomes allowing static and dynamic analysis due to the lack of sophisticated tools for their reconstruction. Here, we describe Augusta, an open-source Python package for Gene Regulatory Network (GRN) and Boolean Network (BN) inference from the high-throughput gene expression data. Augusta can reconstruct genome-wide models suitable for static and dynamic analyses. Augusta uses a unique approach where the first estimation of a GRN inferred from expression data is further refined by predicting transcription factor binding motifs in promoters of regulated genes and by incorporating verified interactions obtained from databases. Moreover, a refined GRN is transformed into a draft BN by searching in the curated model database and setting logical rules to incoming edges of target genes, which can be further manually edited as the model is provided in the SBML file format. The approach is applicable even if information about the organism under study is not available in the databases, which is typically the case for non-model organisms including most microbes. Augusta can be operated from the command line and, thus, is easy to use for automated prediction of models for various genomes. The Augusta package is freely available at github.com/JanaMus/Augusta. Documentation and tutorials are available at augusta.readthedocs.io. | en |
dc.format | text | cs |
dc.format.extent | 783-790 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Computational and Structural Biotechnology Journal. 2024, vol. 23, issue December 2024, p. 783-790. | en |
dc.identifier.doi | 10.1016/j.csbj.2024.01.013 | cs |
dc.identifier.issn | 2001-0370 | cs |
dc.identifier.orcid | 0000-0001-6910-6047 | cs |
dc.identifier.orcid | 0000-0002-8269-4020 | cs |
dc.identifier.other | 187210 | cs |
dc.identifier.researcherid | AHB-1545-2022 | cs |
dc.identifier.researcherid | K-1120-2014 | cs |
dc.identifier.scopus | 56309904900 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/245285 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | Computational and Structural Biotechnology Journal | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S2001037024000138?via%3Dihub | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2001-0370/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | Python package | en |
dc.subject | gene interactions | en |
dc.subject | mutual information | en |
dc.subject | transcription factor | en |
dc.subject | binding motifs | en |
dc.subject | databases | en |
dc.title | Augusta: From RNA-Seq to Gene Regulatory Networks and Boolean Models | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-187210 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:59 | en |
sync.item.modts | 2025.01.17 16:42:06 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Ústav soudního inženýrství. Ústav soudního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- paper.pdf
- Size:
- 1.9 MB
- Format:
- Adobe Portable Document Format
- Description:
- file paper.pdf