Spatial Localization of Electromagnetic Radiation Sources by Cascade Neural Network Model with Noise Reduction

Loading...
Thumbnail Image
Date
2023-09
Authors
Ilic, M.
Stankovic, Z.
Males-Ilic, N.
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In this paper, the Direction of Arrival - DoA estimation for two mobile sources was performed by using the Single Multilayer Perceptron (MLP) neural network model (SMLP-DoA) and the Cascade MLP model(CMLP). The latter model consists of two neural networks connected in a cascade where the outputs of the first MLP that rejects noise represent the inputs to the second network in a cascade. The outputs of the neural network models determine the direction of arrival of the incoming signals. Two cases were considered, in the first case the neural networks were trained on the samples that were without noise, and in the second with samples containing noise. Both considered neural network models were tested with noisy samples. The results of these two neural models are compared to the results achieved by the RootMUSIC algorithm. The presented results show that the proposed CMLP model has a higher accuracy in determining the angular positions of sources compared to the classical SMLP-DoA model and the RootMUSIC algorithm. Moreover, the CMLP model executes significantly faster compared to the model based on the RootMUSIC algorithm.
Description
Citation
Radioengineering. 2023 vol. 32, č. 3, s. 381-390. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_03_0381_0390.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO