Model uncertainty in diffusion coefficient for chloride ingress into concrete

Loading...
Thumbnail Image

Authors

Konečný, Petr
Horňáková, Marie
Lehner, Petr
Rovnaníková, Pavla
Sýkora, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Diffusion coefficient for the chloride ingress into concrete is a key parameter describing the resistance against chloride penetration into the concrete. Consequently, it is an important aspect of the durability of reinforced concrete structures endangered by chloride-induced corrosion. The diffusion coefficient may be used for the direct assessment of the concrete quality with respect to chloride ingress and with respect to the numerical analysis of the durability of reinforced concrete structures. To estimate the diffusion coefficient, the computation based on the Second Fick's Law model and approximation of chloride profile from destructive penetration tests is usually utilised. Semi-destructive or non-destructive electrochemical tests provide estimates of the diffusion coefficient. The study reveals that (a) the resistivity readings provide a higher estimate for diffusion coefficient in comparison to short-time field exposures that seem to be associated with large uncertainty for exposure periods shorter than one year; (b) electrical resistivity measurements show significantly lower variation com-pared to the estimates based on chloride profiles. (C) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of ICSID 2020 Organizers.
Diffusion coefficient for the chloride ingress into concrete is a key parameter describing the resistance against chloride penetration into the concrete. Consequently, it is an important aspect of the durability of reinforced concrete structures endangered by chloride-induced corrosion. The diffusion coefficient may be used for the direct assessment of the concrete quality with respect to chloride ingress and with respect to the numerical analysis of the durability of reinforced concrete structures. To estimate the diffusion coefficient, the computation based on the Second Fick's Law model and approximation of chloride profile from destructive penetration tests is usually utilised. Semi-destructive or non-destructive electrochemical tests provide estimates of the diffusion coefficient. The study reveals that (a) the resistivity readings provide a higher estimate for diffusion coefficient in comparison to short-time field exposures that seem to be associated with large uncertainty for exposure periods shorter than one year; (b) electrical resistivity measurements show significantly lower variation com-pared to the estimates based on chloride profiles. (C) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of ICSID 2020 Organizers.

Description

Citation

Procedia Structural Integrity. 2021, vol. 31, issue 1, p. 147-153.
https://www.sciencedirect.com/science/article/pii/S2452321621000263

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO