A tabu search approach for the reconstruction of binary images without empty interior region

dc.contributor.authorBillionnet, A.
dc.contributor.authorJarray, F.
dc.contributor.authorTlig, G.
dc.contributor.authorZagrouba, E.
dc.coverage.issue2cs
dc.coverage.volume5cs
dc.date.accessioned2017-02-03T11:15:56Z
dc.date.available2017-02-03T11:15:56Z
dc.date.issued2016cs
dc.description.abstractIn this paper, we are concerned with a discrete tomography problem. We seek to reconstruct a binary image from its orthogonal projections, i.e, its horizontal and vertical line sums without interior black holes. We provide a tabu search approach to minimize the number of holes while satisfying the projections. We test our approach on some random binary images. Computational results show that the algorithm proposed produces near-optimal solutions for all test problems.en
dc.formattextcs
dc.format.extent147-154cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2016 vol. 5, č. 2, s. 147-154. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2016.10en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/63786
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/5_2/ma_5_2_billionnet_et_al_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectdiscrete tomographyen
dc.subjecttabu searchen
dc.subjectadjacency binary imagesen
dc.subjectinterior holes binary imagesen
dc.titleA tabu search approach for the reconstruction of binary images without empty interior regionen
dc.type.driverotheren
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_5_2_billionnet_et_al_final.pdf
Size:
1006.12 KB
Format:
Adobe Portable Document Format
Description:
Collections