Miniaturized Microstrip Filter Design Using Active Learning Method

Loading...
Thumbnail Image
Date
2011-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Abstract
Relating coupling and external quality factor of a filter to the physical parameters of the structure which is the final step of any filter design is usually complicated due to geometrical complexities of the filter, or in the case of microstrip resonators due to the lack of the exact solution for the field distribution. Therefore, common approach is using time consuming full wave simulations. In this paper active learning method (ALM) which is a fuzzy-based modeling technique developed by a procedure algorithmically mimics the information-handling process of the human brain, is proposed to overcome this drawback. Modeling steps of an unknown function using ALM will be described using an illustrative example. Afterwards, the modeling approach will be implemented to model coupling factor between two coupled spiral resonators (SRs) for two different coupling structures and external quality factor of the same resonator. Accuracy of the extracted surfaces is validated using two different criteria. Using the extracted surfaces; a four pole chebychev bandpass filter was designed and fabricated. Good agreement between the measured response and simulation validated the accuracy of the extracted surfaces again. Comparing the fabricated SR filter with a square open loop resonator (SOLR) one demonstrates more than 70% of filter area reduction.
Description
Citation
Radioengineering. 2011, vol. 20, č. 4, s. 857-865. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2011/11_04_857_865.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/
DOI
Collections
Citace PRO