Analýza chování malwaru pomocí velkých jazykových modelů

Loading...
Thumbnail Image
Date
Authors
Rádsetoulal, Vlastimil
ORCID
Mark
C
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Táto práca skúma využitie veľkých jazykových modelov (LLMs) vylepšených technikou Retrieval-Augmented Generation (RAG) pre efektívnu analýzu správania malvéru. Začína prehľadom metód analýzy malvéru, ako statických tak dynamických. Štúdia sa zameriava na využitie rámca MITRE ATT&CK na pochopenie správania malvéru veľkým jazykovým modelom. Jadro výskumu sa zameriava na architektúru a implementáciu nástroja na analýzu správania malvéru, ktorý implementuje RAG s využitím LLMs. Tento nástroj má za cieľ pomôcť profesionálom v oblasti bezpečnosti využívať možnosti generatívnej AI na interpretáciu komplexného správania malvéru. Okrem toho, výskum zahŕňa praktické nasadenie systému pre správu bezpečnostných informácií a udalostí (SIEM), pričom využíva platformu Wazuh na detekciu simulovaných útokov. Nasadenie a testovanie prebiehajú v kontrolovanom virtuálnom prostredí. Práca poukazuje na potenciál LLM modelov pri zlepšovaní opatrení v kybernetickej bezpečnosti. Práca končí diskusiou o možných vylepšeniach implementovaného nástroja.
This thesis investigates the use of large language models (LLMs) enhanced with Retrieval-Augmented Generation (RAG) techniques to analyze malware behaviors effectively. Starting with an overview of malware analysis methods, both static and dynamic, the study delves into the use of the MITRE ATT&CK framework to understand and categorize malware strategies. The core of the research focuses on the architecture and implementation of a malware behavior analysis tool that integrates RAG with LLMs. This tool aims to aid security professionals leveraging generative AI's capabilities to interpret complex malware behaviors. Additionally, the research includes a practical deployment of the Security Information and Events Management (SIEM) system, using the Wazuh platform to detect simulated adversarial behaviors. The deployment and testing are done in a controlled virtual environment, highlighting the potential of LLMs in enhancing cyber security measures. The thesis concludes with recommendations for future enhancements and the potential expansion of generative AI applications in cyber security.
Description
Citation
RÁDSETOULAL, V. Analýza chování malwaru pomocí velkých jazykových modelů [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Kybernetická bezpečnost
Comittee
doc. Dr. Ing. Petr Hanáček (předseda) doc. Ing. Michal Bidlo, Ph.D. (člen) doc. Mgr. Lukáš Holík, Ph.D. (člen) prof. Ing. Tomáš Hruška, CSc. (člen) Mgr. Kamil Malinka, Ph.D. (člen) Ing. Vladimír Veselý, Ph.D. (člen)
Date of acceptance
2024-06-20
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm C.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO