Modeling of microfocused Brillouin light scattering spectra
Loading...
Date
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
Although micro-focused Brillouin light scattering (BLS) has been used for more than 20 years, it lacks a complete theoretical description. This complicates the analysis of experimental data and significantly limits the information that can be obtained. To fill this knowledge gap, we have developed a semi-analytical model based on the mesoscopic continuous medium approach. The model consists of the following steps: calculation of the incident electric field and the dynamic susceptibility, calculation of the induced polarization, and calculation of the emitted electric field and its propagation towards the detector. We demonstrate the model on the examples of the measurements of thermal and coherently excited spin waves. However, the used approach is general and can describe any micro-focused Brillouin light scattering experiment. The model can also bring new analytical approaches to mechanobiology experiments or to characterization of acoustic wave-based devices.
Although micro-focused Brillouin light scattering (BLS) has been used for more than 20 years, it lacks a complete theoretical description. This complicates the analysis of experimental data and significantly limits the information that can be obtained. To fill this knowledge gap, we have developed a semi-analytical model based on the mesoscopic continuous medium approach. The model consists of the following steps: calculation of the incident electric field and the dynamic susceptibility, calculation of the induced polarization, and calculation of the emitted electric field and its propagation towards the detector. We demonstrate the model on the examples of the measurements of thermal and coherently excited spin waves. However, the used approach is general and can describe any micro-focused Brillouin light scattering experiment. The model can also bring new analytical approaches to mechanobiology experiments or to characterization of acoustic wave-based devices.
Although micro-focused Brillouin light scattering (BLS) has been used for more than 20 years, it lacks a complete theoretical description. This complicates the analysis of experimental data and significantly limits the information that can be obtained. To fill this knowledge gap, we have developed a semi-analytical model based on the mesoscopic continuous medium approach. The model consists of the following steps: calculation of the incident electric field and the dynamic susceptibility, calculation of the induced polarization, and calculation of the emitted electric field and its propagation towards the detector. We demonstrate the model on the examples of the measurements of thermal and coherently excited spin waves. However, the used approach is general and can describe any micro-focused Brillouin light scattering experiment. The model can also bring new analytical approaches to mechanobiology experiments or to characterization of acoustic wave-based devices.
Description
Keywords
Citation
Physical Review B. 2024, vol. 110, issue 22, 12 p.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.224428
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.224428
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-4276-520X 