Formální metody pro analýzu neuronových sítí
but.committee | prof. Ing. Tomáš Vojnar, Ph.D. (předseda) doc. Ing. Ondřej Ryšavý, Ph.D. (místopředseda) Ing. František Grézl, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) Dr. Ing. Petr Peringer (člen) | cs |
but.defence | Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. Otázky u obhajoby: Plánujete se zúčastnit konference VNN-COMP, případně dotáhnout práci do podoby publikace? Jaká byla struktura sítí, na kterých byl nástroj ověřen? | cs |
but.jazyk | angličtina (English) | |
but.program | Informační technologie | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Češka, Milan | en |
dc.contributor.author | Hudák, David | en |
dc.contributor.referee | Lengál, Ondřej | en |
dc.date.created | 2022 | cs |
dc.description.abstract | Škála oblastí, ve kterých se dnes můžeme setkat s hlubokým učením, se velmi rychle rozrůstá. Zasahuje už dokonce i mezi bezpečnostně kritické oblasti jako doprava či lékařství, a tak narůstá nutnost takové systémy verifikovat. Nicméně, dostatečně škálovatelné nástroje pro verifikaci neuronových sítí, které tvoří hlavní přístup k hlubokému učení, jsou stále ve vývoji. Dnešní řešení tak nejsou schopny verifikovat dostatečně hluboké sítě. Z toho důvodu jsme se zaměřili na jeden ze současných nástrojů, VeriNet, a pokusili jsme jej vylepšit. Obecněji jsme se zaměřili na symbolický přístup k analýze lokální robustnosti. Tento přístup běžně spočívá na vytvoření, zpracování a přepracování reprezentace neuronové sítě, přičemž my jsme se zaměřili na fázi přepracování. Primárně jsme se zabývali algoritmem větví a mezí, který spočívá v rozdělování vstupů dílčích síťových uzlů k vytváření menších podproblémů. Specificky jsme navrhli nové paměťové, alternující a semi-hierarchické strategie. Při experimentování jsme dosáhli výrazných vylepšení nástroje VeriNet. Jeden z našich přístupů je tak schopen řešit více komplexních případů a také vylepšuje zpracování již řešitelných případů. K tomu jsme navíc narazili na anomálie pracovně nazvané jako imploze větví, které vedou k extrémnímu urychlení některých případů. V rámci této práce jsme také rozšířili set síťových benchmarků s modely z balíku nástroje Marabou. | en |
dc.description.abstract | Today, the area where we can use deep learning is becoming broader. It includes safety-critical domains such as traffic or healthcare, and the need for its verification grows. However, sufficient verification toolkits for neural networks, the leading deep learning approach, are still in development. State-of-the-art algorithms now can not verify commonly used deep networks. In this paper, we focus on one of the state-of-the-art solutions, VeriNet. More generally, we focused on the symbolic approach of local robustness analysis. This approach usually relies on creating, processing, and refining the neural network representation, and we focused on the refinement phase. We primarily dealt with the branch and bound algorithm, which in this toolkit splits node inputs in a network to create smaller sub-problems. For this algorithm, we proposed and implemented new split node selection strategies. Specifically, we designed memory-based, alternating, and semi-hierarchical strategies. We achieved significant improvements in the scalability of the VeriNet toolkit. One of our approaches can solve more complex cases and significantly improve already solved cases' performance. Moreover, we discovered an anomaly in the behavior of the verification algorithm we named branch implosions, which led to extreme speed up for some cases. In addition, we extended the set of performed network benchmarks with models from the Marabou package. | cs |
dc.description.mark | B | cs |
dc.identifier.citation | HUDÁK, D. Formální metody pro analýzu neuronových sítí [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022. | cs |
dc.identifier.other | 145159 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/207294 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta informačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Neuronová síť | en |
dc.subject | ReLU | en |
dc.subject | VeriNet | en |
dc.subject | ESIP | en |
dc.subject | metoda větví a mezí | en |
dc.subject | strategie dělení | en |
dc.subject | imploze větví | en |
dc.subject | semi-hierarchická strategie | en |
dc.subject | formální verifikace | en |
dc.subject | Neural network | cs |
dc.subject | ReLU | cs |
dc.subject | VeriNet | cs |
dc.subject | ESIP | cs |
dc.subject | branch and bound | cs |
dc.subject | splitting strategies | cs |
dc.subject | branch implosions | cs |
dc.subject | semi-hierarchical strategy | cs |
dc.subject | formal verification | cs |
dc.title | Formální metody pro analýzu neuronových sítí | en |
dc.title.alternative | Formal Analysis of Neural Networks | cs |
dc.type | Text | cs |
dc.type.driver | bachelorThesis | en |
dc.type.evskp | bakalářská práce | cs |
dcterms.dateAccepted | 2022-06-13 | cs |
dcterms.modified | 2022-06-20-10:22:59 | cs |
eprints.affiliatedInstitution.faculty | Fakulta informačních technologií | cs |
sync.item.dbid | 145159 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.18 19:41:01 | en |
sync.item.modts | 2025.01.15 21:10:11 | en |
thesis.discipline | Informační technologie | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav inteligentních systémů | cs |
thesis.level | Bakalářský | cs |
thesis.name | Bc. | cs |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- final-thesis.pdf
- Size:
- 1.41 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- Posudek-Vedouci prace-24620_v.pdf
- Size:
- 86.59 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek-Vedouci prace-24620_v.pdf
Loading...
- Name:
- Posudek-Oponent prace-24620_o.pdf
- Size:
- 89.69 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek-Oponent prace-24620_o.pdf
Loading...
- Name:
- review_145159.html
- Size:
- 1.44 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_145159.html