Optical and electrical performance of translucent BaTiO3-BaSnO3 ceramics

Loading...
Thumbnail Image

Authors

Bijalwan, Vijay
Kaštyl, Jaroslav
Erhart, Jiří
Prajzler, Vladimír
Tofel, Pavel
Sobola, Dinara
Velazquez, Jose J.
Galusek, Dušan
Maca, Karel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER SCI LTD
Altmetrics

Abstract

Lead-free piezoceramic with the composition of 0.89BaTiO(3)-0.11BaSnO(3) (BT-11BS) was prepared by solid-state reaction followed by conventional sintering achieving nearly full density. The influence of sintering temperature on electrical properties were thoroughly investigated, implying a significant role in achieving best properties, which were obtained between 1420 and 1440 degrees C. The addition of SnO2 in BaTiO3 solid solution promoted grain growth, eventually resulting in the grain sizes between 145 and 216 mu m. An ultra-high dielectric permittivity >5.0 x 10(4) and related dielectric loss of 3.1 % at similar to 40 degrees C was achieved. A high value of quasi-static piezoelectric constant (d(33)) of 693 pC/N and the converse piezoelectric constant (denoted as d(33)*) reached a value of up to 831 pm/V in the frequency range between 10 and 110 Hz. The transmittance of similar to 25 % in the visible region and similar to 40 % in the infrared region together with good electromechanical properties showcasing a unique combination for this material.
Lead-free piezoceramic with the composition of 0.89BaTiO(3)-0.11BaSnO(3) (BT-11BS) was prepared by solid-state reaction followed by conventional sintering achieving nearly full density. The influence of sintering temperature on electrical properties were thoroughly investigated, implying a significant role in achieving best properties, which were obtained between 1420 and 1440 degrees C. The addition of SnO2 in BaTiO3 solid solution promoted grain growth, eventually resulting in the grain sizes between 145 and 216 mu m. An ultra-high dielectric permittivity >5.0 x 10(4) and related dielectric loss of 3.1 % at similar to 40 degrees C was achieved. A high value of quasi-static piezoelectric constant (d(33)) of 693 pC/N and the converse piezoelectric constant (denoted as d(33)*) reached a value of up to 831 pm/V in the frequency range between 10 and 110 Hz. The transmittance of similar to 25 % in the visible region and similar to 40 % in the infrared region together with good electromechanical properties showcasing a unique combination for this material.

Description

Citation

Ceramics International. 2024, vol. 50, issue 16, p. 28123-28132.
https://www.sciencedirect.com/science/article/pii/S0272884224019710?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO