Stochastické řízení zásobní funkce nádrže s pomocí metod umělé inteligence
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta stavební
Abstract
Stochastické řízení pracuje s určitým rozptylem hodnot řídících průtoků s daným pravděpodobnostním rozdělením, a proto dochází k výrazně lepší aproximaci skutečné problematiky řízení. Pro potřeby stochastického řízení zásobní funkce nádrže byly sestaveny stochastické předpovědní modely, které lépe vystihují náhodné procesy, mezi které můžeme zařadit průtok v měrném profilu. Výhodou stochastického řízení oproti deterministickému řízení je výběr možnosti řízení pro danou pravděpodobnost scénáře. Výběr pravděpodobností nám poskytne vějíř možností. V práci je popsána konstrukce a vyhodnocení stochastického adaptivního řízení zásobní funkce nádrže, které využívá modely vycházející z metod umělé inteligence (fuzzy logika, neuronové sítě), jako náhradu tradičních optimalizačních metod (evoluční algoritmy). Modelům vycházejícím z umělé inteligence je poskytnuta matice vzorů (vzorové řízení), která je vytvořena modely využívající evoluční algoritmy, a stochastický model provede řízení se zvolenou pravděpodobností překročení řízeného odtoku vody z nádrže. Celý algoritmus byl testován i validován na fiktivní nádrži. Poté bylo provedeno srovnání řízení poskytnutých jednotlivými řídícími modely, které využívaly předpovědi poskytnutými různými v práci popsanými předpovědními modely. Výsledky stochastického adaptivního řízení byly srovnány s výsledky poskytnutými modelem s tradičními algoritmy, který měl k dispozici 100% přesnost předpovědi. Velkou výhodou modelů vycházejících z metod umělé inteligence je rychlost výpočtu. Tradiční model potřeboval pro provedení stochastického řízení paralelní výpočty v klastru. Závěrem lze říci, že stochastické adaptivní řízení dokázalo provést řízení nádrže se zásobní funkcí velmi dobře. Závěrem práce byly vybrány nejlepší nastavení pro jednotlivé předpovědní a řídící modely.
The main advantage of stochastic forecasting is fan of possible value, which deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. We can categorize discharge in measurement profile as random process. Stochastic management is worked with dispersion of controlling discharge value. In thesis is described construction and evaluation of adaptive stochastic model base on fuzzy logic, neural networks and evolution algorithm, which are used stochastic forecast from forecasting models described in thesis. The learning fuzzy model and neural network is used as replacement of classic optimization algorithm (evolution algorithm). Model was tested and validated on made up large open water reservoir. Results were evaluated and were compared with model base on traditional algorithms, which was used for 100% forecast (forecasted values are real values). The management of the large open water reservoir with storage function, which was given by stochastic adaptive managing, was logical. The main advantage of fuzzy model and neural network model is computing speed. Classical optimization model is needed much more time for same calculation as fuzzy and neural network model, therefore classic model used clusters for stochastic calculation.
The main advantage of stochastic forecasting is fan of possible value, which deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. We can categorize discharge in measurement profile as random process. Stochastic management is worked with dispersion of controlling discharge value. In thesis is described construction and evaluation of adaptive stochastic model base on fuzzy logic, neural networks and evolution algorithm, which are used stochastic forecast from forecasting models described in thesis. The learning fuzzy model and neural network is used as replacement of classic optimization algorithm (evolution algorithm). Model was tested and validated on made up large open water reservoir. Results were evaluated and were compared with model base on traditional algorithms, which was used for 100% forecast (forecasted values are real values). The management of the large open water reservoir with storage function, which was given by stochastic adaptive managing, was logical. The main advantage of fuzzy model and neural network model is computing speed. Classical optimization model is needed much more time for same calculation as fuzzy and neural network model, therefore classic model used clusters for stochastic calculation.
Description
Keywords
Vodní nádrž, průměrný měsíční průtok, stochastická, předpověď, stochastické řízení, fuzzy, neuronová síť, evoluční algoritmy, zásobní funkce., Large open water reservoir, average monthly flow, stochastic forecasting, stochastic management fuzzy, evolution algorithm, neural networks, storage function.
Citation
KOZEL, T. Stochastické řízení zásobní funkce nádrže s pomocí metod umělé inteligence [online]. Brno: Vysoké učení technické v Brně. Fakulta stavební. .
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Vodní hospodářství a vodní stavby
Comittee
Date of acceptance
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení