Radar Waveform Strategy Based on Game Theory

Loading...
Thumbnail Image

Authors

Wang, Honglin
Li, Wei
Wang, He
Xu, Jianye
Zhao, Junlong

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

In this paper, we proposed two waveform design methods based on game theory to address the problem of radar detection performance degradation in electronic warfare. Since radar and jammer are completely hostile, their interaction is modeled as two-person zero-sum game. Signal-to-Interference-plus-Noise Ratio (SINR) criterion is used in formulating the utility functions. The existence of Nash equilibrium in games is verified by mathematical derivation. Different game waveform strategies are designed for different information levels of radar and jammer. Iterative water-filling method and two-step water-filling method are designed to achieve Cournot equilibrium and Stackelberg equilibrium, respectively. Simulation results reveal that game strategies can bring higher radar detection performance than No game signal, especially when jammer power is lower than radar power. Radar detection probability based on game theory can be increased by up to 10% without changing the power. This demonstrates game strategies have great potentials for radar waveform design in electronic warfare.

Description

Citation

Radioengineering. 2019 vol. 28, č. 4, s. 757-764. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_04_0757_0764.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO