A Novel High-Gain Circularly Polarized Filtenna Based on Coaxial Structure

Loading...
Thumbnail Image

Authors

Zhang, D.
Zhu, K.
Qi, S.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering Society

ORCID

Altmetrics

Abstract

A novel omnidirectional slot array filtenna with a circularly polarized (CP) radiation beam is presented in this paper. This filtenna utilizes the coaxial cylinder structure, and the antenna’s filtering function is primarily achieved through the direct synthesis method of a tubular bandpass filter. Four perpendicular slot pairs form the basic omnidirectional CP radiation element, which is cut into the sleeve and added to the outer conductor of the coaxial cylinder to implement the compact performance. To simplify the design, this work utilizes the high and low impedance conversion of the inner conductor, as well as isolation through dielectric materials. This filtenna achieves high gain by forming an array along the z-axis direction and placing the antenna elements reasonably for radiation in phase. A prototype was designed and fabricated to validate its practicality. The results indicate a fractional impedance bandwidth (S11 less than -10 dB) of 5.8%, from 8.87 GHz to 9.39 GHz, and a 3 dB axial-ratio (AR) bandwidth of 6.1%, from 8.85 GHz to 9.40 GHz. The realized gain of the antenna is consistently higher than 5.29 dBi over the operating bandwidth, and its out-of-roundness is less than 1.5 dB in the radiation direction.

Description

Citation

Radioengineering. 2025 vol. 34, č. 3, s. 422-428. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2025/25_03_0422_0428.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO