Discrete-Time Modeling of PMSM for Parametric Estimation and Model Predictive Control Tasks

dc.contributor.authorZezula, Lukášcs
dc.contributor.authorBlaha, Petrcs
dc.date.issued2023-11-16cs
dc.description.abstractThis paper presents novel implicit and explicit discrete-time permanent magnet synchronous motor models. Both derived models solve the problem of numerical instability and poor precision of motor currents' discrete-time prototypes formed using the forward Euler method and preserve the tolerable complexity of resulting descriptions. Discrete-time models of currents are derived based on the linear time-varying systems approach, considering the electrical angular velocity time-varying parameter. Angular velocity and angle are discretized by using the linear multistep methods. The implicit variant of the model is dedicated to parametric estimation tasks, and the explicit variant is to model predictive control. The derived descriptions are validated within the simulation by comparing the original continuous-time model and Euler approximation with the explicit model. Furthermore, the prediction capabilities of the explicit model and Euler approximation are compared as well.en
dc.formattextcs
dc.format.extent6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIECON 2023: 49th Annual Conference of the IEEE Industrial Electronics Society. 2023, 6 p.en
dc.identifier.doi10.1109/IECON51785.2023.10312226cs
dc.identifier.isbn979-8-3503-3182-0cs
dc.identifier.orcid0000-0002-3183-2438cs
dc.identifier.orcid0000-0001-5534-2065cs
dc.identifier.other185380cs
dc.identifier.researcheridD-6854-2012cs
dc.identifier.scopus7006825993cs
dc.identifier.urihttp://hdl.handle.net/11012/244305
dc.language.isoencs
dc.publisherIEEEcs
dc.relationEuropean Union (EU) & "Horizon 2020"
dc.relation.ispartofIECON 2023: 49th Annual Conference of the IEEE Industrial Electronics Societycs
dc.relation.projectIdinfo:eu-repo/grantAgreement/EC/H2020/101007326/EU//AI4CSM
dc.relation.projectIdinfo:eu-repo/grantAgreement/EC/H2020/857306/EU//RICAIP
dc.relation.urihttps://ieeexplore.ieee.org/document/10312226cs
dc.rights(C) IEEEcs
dc.rights.accessopenAccesscs
dc.subjectdiscrete-time systemsen
dc.subjectmathematical modelsen
dc.subjectmodel checkingen
dc.subjectparameter estimationen
dc.subjectpermanent magnet motorsen
dc.subjectpredictive controlen
dc.subjectpredictive modelsen
dc.subjectsystems modelingen
dc.titleDiscrete-Time Modeling of PMSM for Parametric Estimation and Model Predictive Control Tasksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-185380en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:39:34en
sync.item.modts2025.01.17 20:32:39en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí technikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IECON51785.2023.10312226_accepted.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description:
file IECON51785.2023.10312226_accepted.pdf