User Churn Model in E-Commerce Retail
dc.contributor.author | Fridrich, Martin | cs |
dc.contributor.author | Dostál, Petr | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 30 | cs |
dc.date.issued | 2022-04-05 | cs |
dc.description.abstract | In e-commerce retail, maintaining a healthy customer base through retention management is necessary. Churn prediction efforts support the goal of retention and rely upon dependent and independent characteristics. Unfortunately, there does not appear to be a consensus regarding a user churn model. Thus, our goal is to propose a model based on a traditional and new set of attributes and explore its properties using auxiliary evaluation. Individual variable importance is assessed using the best performing modeling pipelines and a permutation procedure. In addition, we estimate the effects on the performance and quality of a feature set using an original technique based on importance ranking and information retrieval. The performance benchmark reveals satisfying pipelines utilizing LR, SVM-RBF, and GBM learners. The solutions rely profoundly on traditional recency and frequency aspects of user behavior. Interestingly, SVM-RBF and GBM exploit the potential of more subtle elements describing user preferences or date-time behavioural patterns. The collected evidence may also aid business decision-making associated with churn prediction efforts, e.g., retention campaign design. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Scientific Papers of the University of Pardubice, Series D. 2022, vol. 30, issue 1, p. 1-12. | en |
dc.identifier.doi | 10.46585/sp30011478 | cs |
dc.identifier.issn | 1804-8048 | cs |
dc.identifier.orcid | 0000-0002-7871-4789 | cs |
dc.identifier.other | 177514 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/204120 | |
dc.language.iso | en | cs |
dc.publisher | Univ Pardubice, Fac Economics Adm | cs |
dc.relation.ispartof | Scientific Papers of the University of Pardubice, Series D | cs |
dc.relation.uri | https://editorial.upce.cz/1804-8048/30/1/1478 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1804-8048/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | User Model | en |
dc.subject | Churn Prediction | en |
dc.subject | Customer Relationship Management | en |
dc.subject | Electronic Commerce | en |
dc.subject | Retail | en |
dc.subject | Machine Learning | en |
dc.subject | Feature Importance | en |
dc.subject | Feature Set Importance | en |
dc.title | User Churn Model in E-Commerce Retail | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-177514 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:43:30 | en |
sync.item.modts | 2025.01.17 18:34:13 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- SciPap01478.pdf
- Size:
- 427.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- SciPap01478.pdf