Využití strojového učení pro predikci časových řad u počítačové komunikace
but.committee | prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Lukáš Burget, Ph.D. (člen) doc. Mgr. Lukáš Holík, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. František Grézl, Ph.D. (člen) prof. Ing. Lukáš Sekanina, Ph.D. (člen) | cs |
but.defence | Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B. | cs |
but.jazyk | angličtina (English) | |
but.program | Informační technologie a umělá inteligence | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Matoušek, Petr | en |
dc.contributor.author | Kašpárek, Aleš | en |
dc.contributor.referee | Burgetová, Ivana | en |
dc.date.created | 2024 | cs |
dc.description.abstract | Tato diplomová práce zkoumá komplexní svět síťových komunikačních systémů, které vyžadují pokročilé metody předpovědi, aby fungovaly efektivně, spolehlivě a bezpečně. Se sítěmi stále složitější, přesné předvídání podmínek sítě a jejího provozu je rozhodující pro plánování, řízení zdrojů, detekci anomálií a zlepšování systémů. Práce začíná představením konceptu časových řad dat, který pokládá základ pro pochopení dynamiky v síťových systémech. Pokračuje tím, že představuje řadu analytických nástrojů a technik pro rozbor tohoto druhu dat, se zvláštním zaměřením na tradiční statistické metody. Mezi nimi je modelům Moving Average (MA), Auto Regressive (AR) a Auto Regresive Integrated Moving Average (ARIMA) věnována zvláštní pozornost pro své schopnosti v předpovídání budoucích stavů. Posun od tradičního předpovídání k používání strojového učení (ML) je ústředním bodem této práce. Práce zkoumá několik přístupů strojového učení (ML), jako jsou sítě Long Short-Term Memory (LSTM), konvoluční neuronové sítě (CNN), aby ukázala, jak mohou tyto metody identifikovat složité vzorce v síťovém provozu. | en |
dc.description.abstract | This master thesis examines the complex world of network communication systems, which require advanced forecasting methods to run efficiently, reliably, and safely. With networks becoming more complex, accurately predicting network conditions and traffic is critical for planning, resource management, detecting unusual activity, and improving systems. The thesis commences by introducing the concept of time series data, laying the foundation for understanding the temporal dynamics within network systems. It progresses by presenting an array of analytical tools and techniques for dissecting this kind of data, with a particular focus on traditional statistical methods. Among these, the Moving Average (MA), Auto Regressive (AR) and Auto Regresive Integrated Moving Average (ARIMA) models are given special attention for its established capabilities in forecasting. The shift from traditional forecasting to the use of machine learning (ML) is central to this thesis. It investigates several machine learning (ML) approaches, such as Long Short-Term Memory (LSTM) networks, convolutional neural networks (CNNs), to demonstrate how they can identify the complex patterns in network traffic. | cs |
dc.description.mark | B | cs |
dc.identifier.citation | KAŠPÁREK, A. Využití strojového učení pro predikci časových řad u počítačové komunikace [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024. | cs |
dc.identifier.other | 153380 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/248877 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta informačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | časové řady | en |
dc.subject | strojové učení | en |
dc.subject | předpovědi | en |
dc.subject | koncoluční neuronové sítě | en |
dc.subject | Long Short-Term Memory | en |
dc.subject | ARIMA | en |
dc.subject | time series | cs |
dc.subject | machine learning | cs |
dc.subject | forecast | cs |
dc.subject | convolutional neural networks | cs |
dc.subject | Long Short-Term Memory | cs |
dc.subject | ARIMA | cs |
dc.title | Využití strojového učení pro predikci časových řad u počítačové komunikace | en |
dc.title.alternative | Time Series Forecasting Using Maching Learning for Network Communication | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2024-06-18 | cs |
dcterms.modified | 2024-06-18-14:23:28 | cs |
eprints.affiliatedInstitution.faculty | Fakulta informačních technologií | cs |
sync.item.dbid | 153380 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.26 15:38:09 | en |
sync.item.modts | 2025.01.15 13:05:21 | en |
thesis.discipline | Strojové učení | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav informačních systémů | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |