Metody pro analýzu dlouhodobých klinických záznamů intrakraniálního EEG u epileptických pacientů

but.committeedoc. Ing. Jana Kolářová, Ph.D. (předseda) prof. MUDr. Jakub Otáhal, Ph.D. (člen) Ing. Martin Lamoš, Ph.D. (člen) Doc. MUDr. Martina Bočková, Ph.D. (člen) prof. Eric Daniel Glowacki, Ph.D. (člen) prof. Ing. Jiří Mekyska, Ph.D. (člen)cs
but.defenceIng. Trávníček prezentoval výsledky své práce, které byly publikovány v impaktovaných časopisech. Posudky oponentů byly pozitivní a doktorand odpověděl na všechny položené otázky. V diskuzi byly položeny další otázky členů komise a odpovědi byly robněž zodpovězeny bez výhrad.cs
but.jazykangličtina (English)
but.programBiomedicínské technologie a bioinformatikacs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorJurák, Pavelen
dc.contributor.authorTrávníček, Vojtěchen
dc.contributor.refereeOtáhal, Jakuben
dc.contributor.refereeLamoš, Martinen
dc.date.accessioned2026-01-15T04:54:33Z
dc.date.created2026cs
dc.description.abstractIntracranial EEG (iEEG) is an indispensable method for pre-surgical planning in patients with pharmacoresistant epilepsy. The current clinical standard for the identification of surgical targets is grounded in the analysis of ictal data, while interictal recordings still play a minor role in clinical diagnoses despite representing 99% of presurgical data. This thesis introduces relative entropy as a new feature for the analysis of interictal data to locate the epileptogenic zone, hence the surgical target. It provides analyses of confounding variables such as antiseizure medication, states of vigilance, and proximity to seizures and reveals that states of vigilance modulate feature values and distributions the most. It further investigates novel features of very-fast ripples and ultra-fast ripples and explores their behavior in different states of vigilance. Finally, a novel detection method for ultra-fast oscillations (2-8kHz) was designed and implemented to allow quantitave analyses of this novel phenomena. Together, these results offer new features for the identification of the epileptogenic zone and contribute to a deeper understanding of presurgical iEEG recordings by description of different confounding factors and their influence on iEEG.en
dc.description.abstractIntracranial EEG (iEEG) is an indispensable method for pre-surgical planning in patients with pharmacoresistant epilepsy. The current clinical standard for the identification of surgical targets is grounded in the analysis of ictal data, while interictal recordings still play a minor role in clinical diagnoses despite representing 99% of presurgical data. This thesis introduces relative entropy as a new feature for the analysis of interictal data to locate the epileptogenic zone, hence the surgical target. It provides analyses of confounding variables such as antiseizure medication, states of vigilance, and proximity to seizures and reveals that states of vigilance modulate feature values and distributions the most. It further investigates novel features of very-fast ripples and ultra-fast ripples and explores their behavior in different states of vigilance. Finally, a novel detection method for ultra-fast oscillations (2-8kHz) was designed and implemented to allow quantitave analyses of this novel phenomena. Together, these results offer new features for the identification of the epileptogenic zone and contribute to a deeper understanding of presurgical iEEG recordings by description of different confounding factors and their influence on iEEG.cs
dc.description.markPcs
dc.identifier.citationTRÁVNÍČEK, V. Metody pro analýzu dlouhodobých klinických záznamů intrakraniálního EEG u epileptických pacientů [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2026.cs
dc.identifier.other173696cs
dc.identifier.urihttps://hdl.handle.net/11012/255821
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectepilepsyen
dc.subjectiEEGen
dc.subjectsignal processingen
dc.subjecthigh-frequency oscillationsen
dc.subjectepilepsycs
dc.subjectiEEGcs
dc.subjectsignal processingcs
dc.subjecthigh-frequency oscillationscs
dc.titleMetody pro analýzu dlouhodobých klinických záznamů intrakraniálního EEG u epileptických pacientůen
dc.title.alternativeMethods for Analysis of Long-Term Clinical Recordings of Intracranial EEG in Epileptic Patientscs
dc.typeTextcs
dc.type.driverdoctoralThesisen
dc.type.evskpdizertační prácecs
dcterms.dateAccepted2026-01-14cs
dcterms.modified2026-01-14-14:25:06cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid173696en
sync.item.dbtypeZPen
sync.item.insts2026.01.15 05:54:32en
sync.item.modts2026.01.15 05:31:33en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.levelDoktorskýcs
thesis.namePh.D.cs

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
17.99 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
Posudek-Vedouci prace-posudek_skolitele_Vojtech Travnicek_Ing. Jurak.pdf
Size:
114.92 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Vedouci prace-posudek_skolitele_Vojtech Travnicek_Ing. Jurak.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-posudek oponenta prof. Otahal_disertace Travnicek_.pdf
Size:
329.11 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Oponent prace-posudek oponenta prof. Otahal_disertace Travnicek_.pdf
Loading...
Thumbnail Image
Name:
Posudek-Oponent prace-posudek oponenta dr. Lamos_disertace Travnicek_.pdf
Size:
90.92 KB
Format:
Adobe Portable Document Format
Description:
file Posudek-Oponent prace-posudek oponenta dr. Lamos_disertace Travnicek_.pdf
Loading...
Thumbnail Image
Name:
review_173696.html
Size:
1.32 KB
Format:
Hypertext Markup Language
Description:
file review_173696.html

Collections