Metody pro analýzu dlouhodobých klinických záznamů intrakraniálního EEG u epileptických pacientů
Loading...
Files
Date
Authors
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
ORCID
Abstract
Intracranial EEG (iEEG) is an indispensable method for pre-surgical planning in patients with pharmacoresistant epilepsy. The current clinical standard for the identification of surgical targets is grounded in the analysis of ictal data, while interictal recordings still play a minor role in clinical diagnoses despite representing 99% of presurgical data. This thesis introduces relative entropy as a new feature for the analysis of interictal data to locate the epileptogenic zone, hence the surgical target. It provides analyses of confounding variables such as antiseizure medication, states of vigilance, and proximity to seizures and reveals that states of vigilance modulate feature values and distributions the most. It further investigates novel features of very-fast ripples and ultra-fast ripples and explores their behavior in different states of vigilance. Finally, a novel detection method for ultra-fast oscillations (2-8kHz) was designed and implemented to allow quantitave analyses of this novel phenomena. Together, these results offer new features for the identification of the epileptogenic zone and contribute to a deeper understanding of presurgical iEEG recordings by description of different confounding factors and their influence on iEEG.
Intracranial EEG (iEEG) is an indispensable method for pre-surgical planning in patients with pharmacoresistant epilepsy. The current clinical standard for the identification of surgical targets is grounded in the analysis of ictal data, while interictal recordings still play a minor role in clinical diagnoses despite representing 99% of presurgical data. This thesis introduces relative entropy as a new feature for the analysis of interictal data to locate the epileptogenic zone, hence the surgical target. It provides analyses of confounding variables such as antiseizure medication, states of vigilance, and proximity to seizures and reveals that states of vigilance modulate feature values and distributions the most. It further investigates novel features of very-fast ripples and ultra-fast ripples and explores their behavior in different states of vigilance. Finally, a novel detection method for ultra-fast oscillations (2-8kHz) was designed and implemented to allow quantitave analyses of this novel phenomena. Together, these results offer new features for the identification of the epileptogenic zone and contribute to a deeper understanding of presurgical iEEG recordings by description of different confounding factors and their influence on iEEG.
Intracranial EEG (iEEG) is an indispensable method for pre-surgical planning in patients with pharmacoresistant epilepsy. The current clinical standard for the identification of surgical targets is grounded in the analysis of ictal data, while interictal recordings still play a minor role in clinical diagnoses despite representing 99% of presurgical data. This thesis introduces relative entropy as a new feature for the analysis of interictal data to locate the epileptogenic zone, hence the surgical target. It provides analyses of confounding variables such as antiseizure medication, states of vigilance, and proximity to seizures and reveals that states of vigilance modulate feature values and distributions the most. It further investigates novel features of very-fast ripples and ultra-fast ripples and explores their behavior in different states of vigilance. Finally, a novel detection method for ultra-fast oscillations (2-8kHz) was designed and implemented to allow quantitave analyses of this novel phenomena. Together, these results offer new features for the identification of the epileptogenic zone and contribute to a deeper understanding of presurgical iEEG recordings by description of different confounding factors and their influence on iEEG.
Description
Keywords
Citation
TRÁVNÍČEK, V. Metody pro analýzu dlouhodobých klinických záznamů intrakraniálního EEG u epileptických pacientů [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2026.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
doc. Ing. Jana Kolářová, Ph.D. (předseda)
prof. MUDr. Jakub Otáhal, Ph.D. (člen)
Ing. Martin Lamoš, Ph.D. (člen)
Doc. MUDr. Martina Bočková, Ph.D. (člen)
prof. Eric Daniel Glowacki, Ph.D. (člen)
prof. Ing. Jiří Mekyska, Ph.D. (člen)
Date of acceptance
2026-01-14
Defence
Ing. Trávníček prezentoval výsledky své práce, které byly publikovány v impaktovaných časopisech. Posudky oponentů byly pozitivní a doktorand odpověděl na všechny položené otázky. V diskuzi byly položeny další otázky členů komise a odpovědi byly robněž zodpovězeny bez výhrad.
Result of defence
práce byla úspěšně obhájena
